-
Notifications
You must be signed in to change notification settings - Fork 0
/
costFunctionReg.m
31 lines (22 loc) · 1.12 KB
/
costFunctionReg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
function [J, grad] = costFunctionReg(theta, X, y, lambda)
%COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% gradient of the cost w.r.t. to the parameters.
% Initialize some useful values
m = length(y); % number of training examples
% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));
% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
one = ones(length(y),1);
J = -sum(log(sigmoid(X*theta)).*y+log(one-sigmoid(X*theta)).*(one-y))/m + (theta'*theta-theta(1)^2)*lambda/(2*m);
grad = ((sigmoid(X*theta)-y)'*X/m)' + lambda*theta/m;
grad0= (sigmoid(X*theta)-y)'*X/m;
grad(1)=grad0(1);
% =============================================================
end