forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.js
373 lines (336 loc) · 12.7 KB
/
ui.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import embed from 'vega-embed';
import {CartPole} from './cart_pole';
import {SaveablePolicyNetwork} from './index';
import {mean, sum} from './utils';
const appStatus = document.getElementById('app-status');
const storedModelStatusInput = document.getElementById('stored-model-status');
const hiddenLayerSizesInput = document.getElementById('hidden-layer-sizes');
const createModelButton = document.getElementById('create-model');
const deleteStoredModelButton = document.getElementById('delete-stored-model');
const cartPoleCanvas = document.getElementById('cart-pole-canvas');
const numIterationsInput = document.getElementById('num-iterations');
const gamesPerIterationInput = document.getElementById('games-per-iteration');
const discountRateInput = document.getElementById('discount-rate');
const maxStepsPerGameInput = document.getElementById('max-steps-per-game');
const learningRateInput = document.getElementById('learning-rate');
const renderDuringTrainingCheckbox =
document.getElementById('render-during-training');
const trainButton = document.getElementById('train');
const testButton = document.getElementById('test');
const iterationStatus = document.getElementById('iteration-status');
const iterationProgress = document.getElementById('iteration-progress');
const trainStatus = document.getElementById('train-status');
const trainSpeed = document.getElementById('train-speed');
const trainProgress = document.getElementById('train-progress');
const stepsContainer = document.getElementById('steps-container');
// Module-global instance of policy network.
let policyNet;
let stopRequested = false;
/**
* Display a message to the info div.
*
* @param {string} message The message to be displayed.
*/
function logStatus(message) {
appStatus.textContent = message;
}
// Objects and functions to support display of cart pole status during training.
let renderDuringTraining = true;
export async function maybeRenderDuringTraining(cartPole) {
if (renderDuringTraining) {
renderCartPole(cartPole, cartPoleCanvas);
await tf.nextFrame(); // Unblock UI thread.
}
}
/**
* A function invoked at the end of every game during training.
*
* @param {number} gameCount A count of how many games has completed so far in
* the current iteration of training.
* @param {number} totalGames Total number of games to complete in the current
* iteration of training.
*/
export function onGameEnd(gameCount, totalGames) {
iterationStatus.textContent = `Game ${gameCount} of ${totalGames}`;
iterationProgress.value = gameCount / totalGames * 100;
if (gameCount === totalGames) {
iterationStatus.textContent = 'Updating weights...';
}
}
/**
* A function invokved at the end of a training iteration.
*
* @param {number} iterationCount A count of how many iterations has completed
* so far in the current round of training.
* @param {*} totalIterations Total number of iterations to complete in the
* current round of training.
*/
function onIterationEnd(iterationCount, totalIterations) {
trainStatus.textContent = `Iteration ${iterationCount} of ${totalIterations}`;
trainProgress.value = iterationCount / totalIterations * 100;
}
// Objects and function to support the plotting of game steps during training.
let meanStepValues = [];
function plotSteps() {
tfvis.render.linechart(stepsContainer, {values: meanStepValues}, {
xLabel: 'Training Iteration',
yLabel: 'Mean Steps Per Game',
width: 400,
height: 300,
});
}
function disableModelControls() {
trainButton.textContent = 'Stop';
testButton.disabled = true;
deleteStoredModelButton.disabled = true;
}
function enableModelControls() {
trainButton.textContent = 'Train';
testButton.disabled = false;
deleteStoredModelButton.disabled = false;
}
/**
* Render the current state of the system on an HTML canvas.
*
* @param {CartPole} cartPole The instance of cart-pole system to render.
* @param {HTMLCanvasElement} canvas The instance of HTMLCanvasElement on which
* the rendering will happen.
*/
function renderCartPole(cartPole, canvas) {
if (!canvas.style.display) {
canvas.style.display = 'block';
}
const X_MIN = -cartPole.xThreshold;
const X_MAX = cartPole.xThreshold;
const xRange = X_MAX - X_MIN;
const scale = canvas.width / xRange;
const context = canvas.getContext('2d');
context.clearRect(0, 0, canvas.width, canvas.height);
const halfW = canvas.width / 2;
// Draw the cart.
const railY = canvas.height * 0.8;
const cartW = cartPole.cartWidth * scale;
const cartH = cartPole.cartHeight * scale;
const cartX = cartPole.x * scale + halfW;
context.beginPath();
context.strokeStyle = '#000000';
context.lineWidth = 2;
context.rect(cartX - cartW / 2, railY - cartH / 2, cartW, cartH);
context.stroke();
// Draw the wheels under the cart.
const wheelRadius = cartH / 4;
for (const offsetX of [-1, 1]) {
context.beginPath();
context.lineWidth = 2;
context.arc(
cartX - cartW / 4 * offsetX, railY + cartH / 2 + wheelRadius,
wheelRadius, 0, 2 * Math.PI);
context.stroke();
}
// Draw the pole.
const angle = cartPole.theta + Math.PI / 2;
const poleTopX =
halfW + scale * (cartPole.x + Math.cos(angle) * cartPole.length);
const poleTopY = railY -
scale * (cartPole.cartHeight / 2 + Math.sin(angle) * cartPole.length);
context.beginPath();
context.strokeStyle = '#ffa500';
context.lineWidth = 6;
context.moveTo(cartX, railY - cartH / 2);
context.lineTo(poleTopX, poleTopY);
context.stroke();
// Draw the ground.
const groundY = railY + cartH / 2 + wheelRadius * 2;
context.beginPath();
context.strokeStyle = '#000000';
context.lineWidth = 1;
context.moveTo(0, groundY);
context.lineTo(canvas.width, groundY);
context.stroke();
const nDivisions = 40;
for (let i = 0; i < nDivisions; ++i) {
const x0 = canvas.width / nDivisions * i;
const x1 = x0 + canvas.width / nDivisions / 2;
const y0 = groundY + canvas.width / nDivisions / 2;
const y1 = groundY;
context.beginPath();
context.moveTo(x0, y0);
context.lineTo(x1, y1);
context.stroke();
}
// Draw the left and right limits.
const limitTopY = groundY - canvas.height / 2;
context.beginPath();
context.strokeStyle = '#ff0000';
context.lineWidth = 2;
context.moveTo(1, groundY);
context.lineTo(1, limitTopY);
context.stroke();
context.beginPath();
context.moveTo(canvas.width - 1, groundY);
context.lineTo(canvas.width - 1, limitTopY);
context.stroke();
}
async function updateUIControlState() {
const modelInfo = await SaveablePolicyNetwork.checkStoredModelStatus();
if (modelInfo == null) {
storedModelStatusInput.value = 'No stored model.';
deleteStoredModelButton.disabled = true;
} else {
storedModelStatusInput.value = `Saved@${modelInfo.dateSaved.toISOString()}`;
deleteStoredModelButton.disabled = false;
createModelButton.disabled = true;
}
createModelButton.disabled = policyNet != null;
hiddenLayerSizesInput.disabled = policyNet != null;
trainButton.disabled = policyNet == null;
testButton.disabled = policyNet == null;
renderDuringTrainingCheckbox.checked = renderDuringTraining;
}
export async function setUpUI() {
const cartPole = new CartPole(true);
if (await SaveablePolicyNetwork.checkStoredModelStatus() != null) {
policyNet = await SaveablePolicyNetwork.loadModel();
logStatus('Loaded policy network from IndexedDB.');
hiddenLayerSizesInput.value = policyNet.hiddenLayerSizes();
}
await updateUIControlState();
renderDuringTrainingCheckbox.addEventListener('change', () => {
renderDuringTraining = renderDuringTrainingCheckbox.checked;
});
createModelButton.addEventListener('click', async () => {
try {
const hiddenLayerSizes =
hiddenLayerSizesInput.value.trim().split(',').map(v => {
const num = Number.parseInt(v.trim());
if (!(num > 0)) {
throw new Error(
`Invalid hidden layer sizes string: ` +
`${hiddenLayerSizesInput.value}`);
}
return num;
});
policyNet = new SaveablePolicyNetwork(hiddenLayerSizes);
console.log('DONE constructing new instance of SaveablePolicyNetwork');
await updateUIControlState();
} catch (err) {
logStatus(`ERROR: ${err.message}`);
}
});
deleteStoredModelButton.addEventListener('click', async () => {
if (confirm(`Are you sure you want to delete the locally-stored model?`)) {
await policyNet.removeModel();
policyNet = null;
await updateUIControlState();
}
});
trainButton.addEventListener('click', async () => {
if (trainButton.textContent === 'Stop') {
stopRequested = true;
} else {
disableModelControls();
try {
const trainIterations = Number.parseInt(numIterationsInput.value);
if (!(trainIterations > 0)) {
throw new Error(`Invalid number of iterations: ${trainIterations}`);
}
const gamesPerIteration = Number.parseInt(gamesPerIterationInput.value);
if (!(gamesPerIteration > 0)) {
throw new Error(
`Invalid # of games per iterations: ${gamesPerIteration}`);
}
const maxStepsPerGame = Number.parseInt(maxStepsPerGameInput.value);
if (!(maxStepsPerGame > 1)) {
throw new Error(`Invalid max. steps per game: ${maxStepsPerGame}`);
}
const discountRate = Number.parseFloat(discountRateInput.value);
if (!(discountRate > 0 && discountRate < 1)) {
throw new Error(`Invalid discount rate: ${discountRate}`);
}
const learningRate = Number.parseFloat(learningRateInput.value);
logStatus(
'Training policy network... Please wait. ' +
'Network is saved to IndexedDB at the end of each iteration.');
const optimizer = tf.train.adam(learningRate);
meanStepValues = [];
onIterationEnd(0, trainIterations);
let t0 = new Date().getTime();
stopRequested = false;
for (let i = 0; i < trainIterations; ++i) {
const gameSteps = await policyNet.train(
cartPole, optimizer, discountRate, gamesPerIteration,
maxStepsPerGame);
const t1 = new Date().getTime();
const stepsPerSecond = sum(gameSteps) / ((t1 - t0) / 1e3);
t0 = t1;
trainSpeed.textContent = `${stepsPerSecond.toFixed(1)} steps/s`
meanStepValues.push({x: i + 1, y: mean(gameSteps)});
console.log(`# of tensors: ${tf.memory().numTensors}`);
plotSteps();
onIterationEnd(i + 1, trainIterations);
await tf.nextFrame(); // Unblock UI thread.
await policyNet.saveModel();
await updateUIControlState();
if (stopRequested) {
logStatus('Training stopped by user.');
break;
}
}
if (!stopRequested) {
logStatus('Training completed.');
}
} catch (err) {
logStatus(`ERROR: ${err.message}`);
}
enableModelControls();
}
});
testButton.addEventListener('click', async () => {
disableModelControls();
let isDone = false;
const cartPole = new CartPole(true);
cartPole.setRandomState();
let steps = 0;
stopRequested = false;
while (!isDone) {
steps++;
tf.tidy(() => {
const action = policyNet.getActions(cartPole.getStateTensor())[0];
logStatus(
`Test in progress. ` +
`Action: ${action === 1 ? '<--' : ' -->'} (Step ${steps})`);
isDone = cartPole.update(action);
renderCartPole(cartPole, cartPoleCanvas);
});
await tf.nextFrame(); // Unblock UI thread.
if (stopRequested) {
break;
}
}
if (stopRequested) {
logStatus(`Test stopped by user after ${steps} step(s).`);
} else {
logStatus(`Test finished. Survived ${steps} step(s).`);
}
console.log(`# of tensors: ${tf.memory().numTensors}`);
enableModelControls();
});
}