forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_classifier.js
261 lines (237 loc) · 8.69 KB
/
image_classifier.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {IMAGENET_CLASSES} from './imagenet_classes';
import {readImageAsTensor} from './image_utils';
const MOBILENET_MODEL_URL =
'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_1.0_224/model.json'
/**
* A classifier for images.
*
* It uses an underlying TensorFlow.js convolutional neural network
* to label a batch of input images. The labels are from the ImageNet
* dataset and can be seen in `./imagenet_classes.js`.
*/
export class ImageClassifier {
constructor() {
this.model = null;
}
/**
* Perform classification on a batch of image tensors.
*
* @param {tf.Tensor} images Batch image tensor of shape
* `[numExamples, height, width, channels]`. The values of `heigth`,
* `width` and `channel` must match the underlying MobileNetV2 model
* (default: 224, 224, 3).
* @param {number} topK How many results with top probability / logit values
* to return for each example.
* @return {Array<{className: string, prob: number}>} An array of classes
* with the highest `topK` probability scores, sorted in the descending
* order of the probability scores. Each element of the array corresponds
* to one example in `images`. The order of the elements matches that
* of `images`.
*/
async classify(images, topK = 5) {
await this.ensureModelLoaded();
return tf.tidy(() => {
const probs = this.model.predict(images);
const sorted = true;
const {values, indices} = tf.topk(probs, topK, sorted);
const classProbs = values.arraySync();
const classIndices = indices.arraySync();
const results = [];
classIndices.forEach((indices, i) => {
const classesAndProbs = [];
indices.forEach((index, j) => {
classesAndProbs.push({
className: IMAGENET_CLASSES[index],
prob: classProbs[i][j]
});
});
results.push(classesAndProbs);
})
return results;
});
}
/**
* If the underlying model is not loaded, load it.
*
* @param {() => any} loadingCallback An optional callback function that will
* be invoked when the model is being loaded.
*/
async ensureModelLoaded(loadingCallback) {
if (this.model == null) {
console.log('Loading image classifier model...');
if (loadingCallback != null) {
loadingCallback();
}
let cachedModelJsonUrl;
if (isNode()) {
// Attempt to find and load model cached on file system if running
// in Node.js.
const fs = require('fs');
const path = require('path');
const cachedModelJsonPath = path.join(
this.getFileSystemCacheDirectory_(), 'model.json');
if (fs.existsSync(cachedModelJsonPath)) {
cachedModelJsonUrl = `file://${cachedModelJsonPath}`;
console.log(`Found cached model at ${cachedModelJsonUrl}`);
}
}
console.time('Model loading');
this.model = await tf.loadLayersModel(
cachedModelJsonUrl == null ?
MOBILENET_MODEL_URL : cachedModelJsonUrl);
console.timeEnd('Model loading');
if (isNode() && cachedModelJsonUrl == null) {
// Cache model on file system if running in Node.js.
const cacheDir = this.getFileSystemCacheDirectory_();
try {
await this.model.save(`file://${cacheDir}`);
console.log(`Cached model at ${cacheDir}`);
} catch (err) {
console.warn(`Failed to save model at cache directory: ${cacheDir}`);
}
}
}
}
/**
* Search for images with content matching target wrods.
*
* @param {string[]} filePaths An array of paths to image files
* @param {string[]} targetWords What target words to search for. An image
* will be considered a match if its content (as determined by
* `imageClassifer`) matches any of the target words.
* @param {() => any} inferenceCallback An optional callback that will
* be invoked when the model is running inference on image data.
*/
async searchFromFiles(filePaths, targetWords, inferenceCallback) {
// Read the content of the image files as tensors with dimensions
// that match the requirement of the image classifier.
const {height, width} = this.getImageSize();
const imageTensors = [];
for (const file of filePaths) {
const imageTensor = await readImageAsTensor(file, height, width);
imageTensors.push(imageTensor);
}
// Combine images to a batch for accelerated inference.
const axis = 0;
const batchImageTensor = tf.concat(imageTensors, axis);
if (inferenceCallback != null) {
inferenceCallback();
}
// Run inference.
const t0 = tf.util.now();
const classNamesAndProbs = await this.classify(batchImageTensor);
const tElapsedMillis = tf.util.now() - t0;
const foundItems = searchForKeywords(
classNamesAndProbs, filePaths, targetWords);
// TensorFlow.js memory cleanup.
tf.dispose([imageTensors, batchImageTensor, imageTensors]);
return {
targetWords,
numSearchedFiles: filePaths.length,
foundItems,
tElapsedMillis
};
}
/** Get the required image sizes (height and width). */
getImageSize() {
if (this.model == null) {
throw new Error(
`Model is not loaded yet. Call ensureModelLoaded() first.`);
}
return {
height: this.model.inputs[0].shape[1],
width: this.model.inputs[0].shape[2]
}
}
getFileSystemCacheDirectory_() {
const path = require('path');
return path.join(getUserHomeDirectory(), '.tfjs-examples-electron');
}
}
/**
* Search for target words in an array of class names and corresponding
* probabilities.
*
* This search is necessary because the class names output by the
* TensorFlow.js model are not isolated English words, instead they long
* phrases such as "tiger shark, Galeocerdo cuvieri". We need to break
* these labels into words and match them against the target words
* provided by the app's user (e.g., "shark").
*
* @param {Array<{className: string, prob: number}>} classNamesAndProbs
* An array of `N` classification results, each of which is an object
* mapping a class name (`className`) to a probability score (`prob`).
* @param {string[]} The file paths of the image files. Must have the
* same length as `classNamesAndProbs`.
* @param {string[]} targetWords An array of target words to search for
* in the results.
* @returns {Array<{filePath: string, matchWord: string, topClasses: string}>}
* All matches to the target words.
*/
export function searchForKeywords(classNamesAndProbs, filePaths, targetWords) {
// Filter through the output class names and probilities to look for
// matches.
const foundItems = [];
for (let i = 0; i < classNamesAndProbs.length; ++i) {
const namesAndProbs = classNamesAndProbs[i];
let matchWord = null;
for (const nameAndProb of namesAndProbs) {
const classTokens = nameAndProb.className.toLowerCase().trim()
.replace(/[,\/]/g, ' ')
.split(' ').filter(x => x.length > 0);
for (const word of targetWords) {
if (classTokens.indexOf(word) !== -1) {
matchWord = word;
break;
}
}
if (matchWord != null) {
break;
}
}
if (matchWord != null) {
foundItems.push({
filePath: filePaths[i],
matchWord,
topClasses: namesAndProbs,
});
}
}
return foundItems;
}
/**
* Is the current environment Node.js?
*
* This logic is specific to Electron, because it checks
* `process.type`.
*/
function isNode() {
return (
typeof process === 'object' &&
typeof process.versions === 'object' &&
typeof process.versions.node !== 'undefined' &&
process.type !== 'renderer');
}
/** Get the user's home directory (Node.js only). */
function getUserHomeDirectory() {
// Based on:
// https://stackoverflow.com/questions/9080085/node-js-find-home-directory-in-platform-agnostic-way
return process.env[process.platform === 'win32' ? 'USERPROFILE' : 'HOME'];
}