forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderer.js
249 lines (218 loc) · 8.52 KB
/
renderer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {MDCSnackbar} from '@material/snackbar';
import * as tf from '@tensorflow/tfjs';
import {ipcRenderer} from 'electron';
import {ImageClassifier} from './image_classifier';
const searchResultsDiv = document.getElementById('search-results');
/**
* IPC handle for classification results.
*
* `arg` is expected to contain the following fields:
* - targetWords: What words were used for the search.
* - numSearchedFiles: How many files have been searched over.
* - tElapsedMillis: How long the inference part of the search took
* (in milliseconds).
* - foundItems: Image files with classification results that match
* any of the target words.
*/
ipcRenderer.on('search-response', (event, arg) => {
displaySearchResults(arg);
});
/** IPC handler for the backend's "Reading images" status. */
ipcRenderer.on('reading-images', (event) => {
showProgress('Reading images...');
});
/** IPC handler for the "model is be loaded" event. */
ipcRenderer.on('loading-model', (event) => {
showProgress('Loading model...');
});
/** IPC handler for the "model is running inference" event. */
ipcRenderer.on('inference-ongoing', (event) => {
showProgress('Classifying images...');
});
/**
* IPC handler for image data read from the backend process.
*
* The image classifier model will be used to perform inference
* on the images, and the matches (if any) will be displayed on
* screen.
*/
ipcRenderer.on('frontend-inference-data', async (event, arg) => {
showProgress('Classifying images in frontend...');
await imageClassifer.ensureModelLoaded(
() => showProgress('Loading frontend model...'));
const results = await imageClassifer.searchFromFiles(
arg.imageFilePaths, getTargetWords(),
() => showProgress('Running image search in frontend...'));
displaySearchResults(results);
});
const imageClassifer = new ImageClassifier();
/** Parse the target words for search from the text box. */
const targetWordsInput = document.getElementById('target-words');
function getTargetWords() {
return targetWordsInput.value.trim().split(',')
.filter(x => x.length > 0).map(x => x.trim().toLowerCase());
}
const snackbar = new MDCSnackbar(document.getElementById('main-snackbar'));
/**
* Display result results (from backend or frontend).
*
* @param {object} results Search result object. Assumed to have the following
* fields:
* - targetWords {string[]} The target words searched for.
* - numSearchedFiles {number} Total number of image files searched over.
* - foundItems {Array} An array of found items (i.e., images with top-5)
* classification results matching any of the elements of `targetWords`.
* - tElapsedMillis {number} The amount of time (in millis) spent on model
* inference.
*/
function displaySearchResults(results) {
hideProgress();
if (results.foundItems.length === 0) {
showSnackbar(
`No match for "${results.targetWords.join(',')}" ` +
`after searching ${results.numSearchedFiles} file(s). ` +
`Model inference took ${results.tElapsedMillis.toFixed(1)} ms`);
} else {
showSnackbar(
`Found ${results.foundItems.length} ` +
`matches from ${results.numSearchedFiles} image(s). ` +
`Model inference took ${results.tElapsedMillis.toFixed(1)} ms`);
results.foundItems.forEach(foundItem => {
createFoundCard(searchResultsDiv, foundItem);
});
}
}
/**
* Display a snackbar message on the screen.
*
* @param {string} message The message to be displayed.
* @param {number} timeoutMillis How many millliseconds the message
* will stay on the screen before disappearing.
*/
function showSnackbar(message, timeoutMillis = 4000) {
snackbar.labelText = message;
snackbar.timeoutMs = timeoutMillis;
snackbar.open();
}
const filesDialogButton = document.getElementById('files-dialog-button');
const frontendInferenceCheckbox =
document.getElementById('frontend-inference-checkbox');
/** The callback for selecting a number of files to search over. */
filesDialogButton.addEventListener('click', async () => {
const targetWords = getTargetWords();
if (targetWords == null || targetWords.length === 0) {
showSnackbar(`You didn't specify any search words!`);
}
const frontendInference = frontendInferenceCheckbox.checked;
if (frontendInference) {
await imageClassifer.ensureModelLoaded(
() => showProgress('Loading frontend model...'));
}
ipcRenderer.send('get-files', {targetWords, frontendInference});
});
const directoriesDialogButton =
document.getElementById('directories-dialog-button');
/** The callback for selecting a number of folder to search in, recursively. */
directoriesDialogButton.addEventListener('click', async () => {
const targetWords = getTargetWords();
if (targetWords == null || targetWords.length === 0) {
showSnackbar(`You didn't specify any search words!`);
}
const frontendInference = frontendInferenceCheckbox.checked;
if (frontendInference) {
await imageClassifer.ensureModelLoaded(
() => showProgress('Loading frontend model...'));
}
ipcRenderer.send('get-directories', {targetWords, frontendInference});
});
/** Helper method for limiting the number of characters shown on screen. */
function limitStringToLength(str, limit = 50) {
if (str.length <= limit) {
return str;
} else {
return `...${str.slice(str.length - limit)}`;
}
}
/**
* Create and material-design card for a search match and add
* it to the root div for search results.
*/
function createFoundCard(rootDiv, foundItem) {
const cardDiv = document.createElement('div');
cardDiv.classList.add('mdl-card');
cardDiv.classList.add('mdl-shadow--2dp');
cardDiv.classList.add('search-result');
const titleDiv = document.createElement('div');
titleDiv.classList.add('mdl-card__title');
titleDiv.textContent = foundItem.matchWord;
cardDiv.appendChild(titleDiv);
const imgDiv = document.createElement('img');
imgDiv.classList.add('search-result-thumbnail');
imgDiv.src = `file://${foundItem.filePath}`;
cardDiv.appendChild(imgDiv);
const pathDiv = document.createElement('div');
pathDiv.classList.add('mdl-card--border');
pathDiv.classList.add('search-result-file-path');
pathDiv.textContent = limitStringToLength(foundItem.filePath);
cardDiv.appendChild(pathDiv);
const topKDiv = document.createElement('div');
topKDiv.classList.add('mdl-card--border');
topKDiv.classList.add('search-result-top-k');
const ul = document.createElement('ul');
for (const classNameAndProb of foundItem.topClasses) {
const li = document.createElement('li');
if (classNameAndProb.prob >= 0.001) {
li.textContent =
`${classNameAndProb.className}: ${classNameAndProb.prob.toFixed(3)}`;
ul.appendChild(li);
}
}
topKDiv.appendChild(ul);
cardDiv.appendChild(topKDiv);
rootDiv.insertBefore(cardDiv, rootDiv.firstChild);
cardDiv.scrollIntoView();
updateClearSearchResultsButtonStatus();
}
const clearSearchResultsButton =
document.getElementById('clear-search-results');
function updateClearSearchResultsButtonStatus() {
clearSearchResultsButton.style.display =
searchResultsDiv.firstChild ? 'block' : 'none';
}
updateClearSearchResultsButtonStatus();
clearSearchResultsButton.addEventListener('click', () => {
while(searchResultsDiv.firstChild) {
searchResultsDiv.removeChild(searchResultsDiv.firstChild);
}
updateClearSearchResultsButtonStatus();
});
const progressBar = document.getElementById('progress-bar');
const progressText = document.getElementById('progress-text');
/** Display an indeterminate progress bar with message. */
function showProgress(message) {
progressText.textContent = message;
progressBar.style.display = 'block';
progressText.style.display = 'block';
}
/** Display the indeterminate progress bar. */
function hideProgress(message) {
progressBar.style.display = 'none';
progressText.style.display = 'none';
}
hideProgress();