forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
152 lines (132 loc) · 4.89 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {generateData} from './data';
import {plotData, plotDataAndPredictions, renderCoefficients} from './ui';
/**
* We want to learn the coefficients that give correct solutions to the
* following cubic equation:
* y = a * x^3 + b * x^2 + c * x + d
* In other words we want to learn values for:
* a
* b
* c
* d
* Such that this function produces 'desired outputs' for y when provided
* with x. We will provide some examples of 'xs' and 'ys' to allow this model
* to learn what we mean by desired outputs and then use it to produce new
* values of y that fit the curve implied by our example.
*/
// Step 1. Set up variables, these are the things we want the model
// to learn in order to do prediction accurately. We will initialize
// them with random values.
const a = tf.variable(tf.scalar(Math.random()));
const b = tf.variable(tf.scalar(Math.random()));
const c = tf.variable(tf.scalar(Math.random()));
const d = tf.variable(tf.scalar(Math.random()));
// Step 2. Create an optimizer, we will use this later. You can play
// with some of these values to see how the model performs.
const numIterations = 75;
const learningRate = 0.5;
const optimizer = tf.train.sgd(learningRate);
// Step 3. Write our training process functions.
/*
* This function represents our 'model'. Given an input 'x' it will try and
* predict the appropriate output 'y'.
*
* It is also sometimes referred to as the 'forward' step of our training
* process. Though we will use the same function for predictions later.
*
* @return number predicted y value
*/
function predict(x) {
// y = a * x ^ 3 + b * x ^ 2 + c * x + d
return tf.tidy(() => {
return a.mul(x.pow(tf.scalar(3, 'int32')))
.add(b.mul(x.square()))
.add(c.mul(x))
.add(d);
});
}
/*
* This will tell us how good the 'prediction' is given what we actually
* expected.
*
* prediction is a tensor with our predicted y values.
* labels is a tensor with the y values the model should have predicted.
*/
function loss(prediction, labels) {
// Having a good error function is key for training a machine learning model
const error = prediction.sub(labels).square().mean();
return error;
}
/*
* This will iteratively train our model.
*
* xs - training data x values
* ys — training data y values
*/
async function train(xs, ys, numIterations) {
for (let iter = 0; iter < numIterations; iter++) {
// optimizer.minimize is where the training happens.
// The function it takes must return a numerical estimate (i.e. loss)
// of how well we are doing using the current state of
// the variables we created at the start.
// This optimizer does the 'backward' step of our training process
// updating variables defined previously in order to minimize the
// loss.
optimizer.minimize(() => {
// Feed the examples into the model
const pred = predict(xs);
return loss(pred, ys);
});
// Use tf.nextFrame to not block the browser.
await tf.nextFrame();
}
}
async function learnCoefficients() {
const trueCoefficients = {a: -.8, b: -.2, c: .9, d: .5};
const trainingData = generateData(100, trueCoefficients);
// Plot original data
renderCoefficients('#data .coeff', trueCoefficients);
await plotData('#data .plot', trainingData.xs, trainingData.ys)
// See what the predictions look like with random coefficients
renderCoefficients('#random .coeff', {
a: a.dataSync()[0],
b: b.dataSync()[0],
c: c.dataSync()[0],
d: d.dataSync()[0],
});
const predictionsBefore = predict(trainingData.xs);
await plotDataAndPredictions(
'#random .plot', trainingData.xs, trainingData.ys, predictionsBefore);
// Train the model!
await train(trainingData.xs, trainingData.ys, numIterations);
// See what the final results predictions are after training.
renderCoefficients('#trained .coeff', {
a: a.dataSync()[0],
b: b.dataSync()[0],
c: c.dataSync()[0],
d: d.dataSync()[0],
});
const predictionsAfter = predict(trainingData.xs);
await plotDataAndPredictions(
'#trained .plot', trainingData.xs, trainingData.ys, predictionsAfter);
predictionsBefore.dispose();
predictionsAfter.dispose();
}
learnCoefficients();