forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_fashion_mnist.js
64 lines (60 loc) · 2.01 KB
/
model_fashion_mnist.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
/**
* Create a model for the Fashion-MNIST image classification problem.
*
* Based on:
* https://github.com/cmasch/zalando-fashion-mnist/blob/master/Simple_Convolutional_Neural_Network_Fashion-MNIST.ipynb
*/
export function createModel() {
const model = tf.sequential();
model.add(tf.layers.batchNormalization({
inputShape: [28, 28, 1]
}));
model.add(tf.layers.conv2d({
filters: 64,
kernelSize: 4,
padding: 'same',
activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: 2}));
model.add(tf.layers.dropout({rate: 0.1}));
model.add(tf.layers.conv2d({
filters: 64,
kernelSize: 4,
activation: 'relu',
}));
model.add(tf.layers.maxPooling2d({poolSize: 2}));
model.add(tf.layers.dropout({rate: 0.3}));
model.add(tf.layers.flatten());
model.add(tf.layers.dense({units: 256, activation: 'relu'}));
model.add(tf.layers.dropout({rate: 0.5}));
model.add(tf.layers.dense({units: 64, activation: 'relu'}));
model.add(tf.layers.batchNormalization());
model.add(tf.layers.dense({units: 10, activation: 'softmax'}));
compileModel(model);
return model;
}
export function compileModel(model) {
const optimizer = 'adam';
model.compile({
optimizer: optimizer,
loss: 'categoricalCrossentropy',
metrics: ['accuracy'],
});
}