forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_housing.js
55 lines (51 loc) · 1.55 KB
/
model_housing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import {featureColumns} from './data_housing';
export function createModel() {
const model = tf.sequential();
model.add(tf.layers.dense({
units: 80,
activation: 'relu',
inputShape: [featureColumns.length]
}));
model.add(tf.layers.dropout({rate: 0.2}));
model.add(tf.layers.dense({
units: 120,
activation: 'relu',
}));
model.add(tf.layers.dropout({rate: 0.1}));
model.add(tf.layers.dense({
units: 20,
activation: 'relu',
}));
model.add(tf.layers.dropout({rate: 0.1}));
model.add(tf.layers.dense({
units: 10,
activation: 'relu',
}));
model.add(tf.layers.dropout({rate: 0.1}));
model.add(tf.layers.dense({units: 1}));
compileModel(model);
return model;
}
export function compileModel(model) {
model.compile({
loss: 'meanAbsoluteError',
optimizer: 'adam'
});
}