forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent_test.js
122 lines (111 loc) · 3.98 KB
/
agent_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs-node';
import {SnakeGameAgent} from "./agent";
import {SnakeGame} from "./snake_game";
describe('SnakeGameAgent', () => {
it('playStep', () => {
const game = new SnakeGame({
height: 9,
width: 9,
numFruits: 1,
initLen: 2
});
const agent = new SnakeGameAgent(game, {
replayBufferSize: 100,
epsilonInit: 1,
epsilonFinal: 0.1,
epsilonDecayFrames: 10
});
const numGames = 40;
let bufferIndex = 0;
for (let n = 0; n < numGames; ++n) {
// At the beginnig of a game, the cumulative reward ought to be 0.
expect(agent.cumulativeReward_).toEqual(0);
let out = null;
let outPrev = null;
for (let m = 0; m < 10; ++m) {
const currentState = agent.game.getState();
out = agent.playStep();
// Check the content of the replay buffer.
expect(agent.replayMemory.buffer[bufferIndex % 100][0])
.toEqual(currentState);
expect(agent.replayMemory.buffer[bufferIndex % 100][1])
.toEqual(out.action);
expect(agent.replayMemory.buffer[bufferIndex % 100][2]).toBeCloseTo(
outPrev == null ? out.cumulativeReward :
out.cumulativeReward - outPrev.cumulativeReward);
expect(agent.replayMemory.buffer[bufferIndex % 100][3]).toEqual(out.done);
expect(agent.replayMemory.buffer[bufferIndex % 100][4])
.toEqual(out.done ? undefined : agent.game.getState());
bufferIndex++;
if (out.done) {
break;
}
outPrev = out;
}
agent.reset();
}
});
it('trainOnReplayBatch', () => {
const game = new SnakeGame({
height: 9,
width: 9,
numFruits: 1,
initLen: 2
});
const replayBufferSize = 1000;
const agent = new SnakeGameAgent(game, {
replayBufferSize,
epsilonInit: 1,
epsilonFinal: 0.1,
epsilonDecayFrames: 1000,
learningRate: 1e-2
});
const oldOnlineWeights =
agent.onlineNetwork.getWeights().map(x => x.dataSync());
const oldTargetWeights =
agent.targetNetwork.getWeights().map(x => x.dataSync());
for (let i = 0; i < replayBufferSize; ++i) {
agent.playStep();
}
// Burn-in run for memory leak check below.
const batchSize = 512;
const gamma = 0.99;
const optimizer = tf.train.adam();
agent.trainOnReplayBatch(batchSize, gamma, optimizer);
const numTensors0 = tf.memory().numTensors;
agent.trainOnReplayBatch(batchSize, gamma, optimizer);
expect(tf.memory().numTensors).toEqual(numTensors0);
const newOnlineWeights =
agent.onlineNetwork.getWeights().map(x => x.dataSync());
const newTargetWeights =
agent.targetNetwork.getWeights().map(x => x.dataSync());
// Verify that the online network's weights are updated.
for (let i = 0; i < oldOnlineWeights.length; ++i) {
expect(tf.tensor1d(newOnlineWeights[i])
.sub(tf.tensor1d(oldOnlineWeights[i]))
.abs().max().arraySync()).toBeGreaterThan(0);
}
// Verify that the target network's weights have not changed.
for (let i = 0; i < oldOnlineWeights.length; ++i) {
expect(tf.tensor1d(newTargetWeights[i])
.sub(tf.tensor1d(oldTargetWeights[i]))
.abs().max().arraySync()).toEqual(0);
}
});
});