forked from tensorflow/tfjs-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreplay_memory.js
74 lines (68 loc) · 2.01 KB
/
replay_memory.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
/** Replay buffer for DQN training. */
export class ReplayMemory {
/**
* Constructor of ReplayMemory.
*
* @param {number} maxLen Maximal buffer length.
*/
constructor(maxLen) {
this.maxLen = maxLen;
this.buffer = [];
for (let i = 0; i < maxLen; ++i) {
this.buffer.push(null);
}
this.index = 0;
this.length = 0;
this.bufferIndices_ = [];
for (let i = 0; i < maxLen; ++i) {
this.bufferIndices_.push(i);
}
}
/**
* Append an item to the replay buffer.
*
* @param {any} item The item to append.
*/
append(item) {
this.buffer[this.index] = item;
this.length = Math.min(this.length + 1, this.maxLen);
this.index = (this.index + 1) % this.maxLen;
}
/**
* Randomly sample a batch of items from the replay buffer.
*
* The sampling is done *without* replacement.
*
* @param {number} batchSize Size of the batch.
* @return {Array<any>} Sampled items.
*/
sample(batchSize) {
if (batchSize > this.maxLen) {
throw new Error(
`batchSize (${batchSize}) exceeds buffer length (${this.maxLen})`);
}
tf.util.shuffle(this.bufferIndices_);
const out = [];
for (let i = 0; i < batchSize; ++i) {
out.push(this.buffer[this.bufferIndices_[i]]);
}
return out;
}
}