-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkidney.R
519 lines (417 loc) · 19.9 KB
/
kidney.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
library("tidyr")
library("dplyr")
library("Seurat")
library("BiocManager")
library("clusterProfiler")
library("dplyr")
library("igraph")
library("KEGGgraph")
library("org.Hs.eg.db")
library("CellChat")
library("data.table")
library("gsheet")
library("readxl")
# Set dirs.
work.d <- setwd(".") # Change as needed
setwd(work.d)
# Everything downloaded or created by the script will appear in one of the three
# folders specified below.
dln.d <- paste0(work.d, "/", "downloaded")
ref.d <- paste0(work.d, "/", "reference-lists")
out.d <- paste0(work.d, "/", "results-output")
dir.create(dln.d)
dir.create(ref.d)
dir.create(out.d)
# Increase this if downloads time out
options(timeout=1800)
### BUILD REFERENCE LISTS ######################################################
#
# Prepare Azimuth kidney metadata for full scRNA-seq dataset
# Upstream URL: https://azimuth.hubmapconsortium.org/references/#Human%20-%20Kidney
www <- "https://seurat.nygenome.org/azimuth/demo_datasets/kidney_demo_stewart.rds"
download.file(www, paste0(dln.d, "/", "kidney_demo_stewart.rds"))
meta <- readRDS(paste0(dln.d, "/", "kidney_demo_stewart.rds"))
meta <- data.frame([email protected])
# Save metadata?
write.csv(meta, paste0(ref.d, "/", "Azimuth kidney_demo_Seurat metadata.csv"))
# Prepare glossary. "HKid_default_MatriCom network.csv" is Supplementary Table S3A.
#
# Go to MatriCom (https://matrinet.shinyapps.io/matricom/) where you have two options:
#
# * use Option 1 to upload "kidney_demo_stewart.rds"
# Query Parameters > Select cell identity labels > celltype
# OR
# * use Option 2 to select Collection > Other open access data
# Dataset > Kidney (Stewart et al., 2019)
#
# Save the file as "HuBMAP Kidney Case Study Text_v1.XLSX" in the currecnt work dir
kidney <- as.data.frame(read_excel("HKid_default_MatriCom network.XLSX", sheet = "communication network"))
######## TODO: TENPORARY FIX, REMOVE WHEN FIXED IN MATRICOM ######################
names(kidney)[names(kidney) == "Type of communication"] <- "Type.of.communication"
##################################################################################
gloss <- data.frame(kid = sort(unique(kidney$Population1)), meta = sort(unique(meta$celltype)))
# Save glossary?
write.csv(gloss, paste0(ref.d, "/", "HuBMAP kidney_base lookup table.csv"))
# ECM-receptor interaction - Homo sapiens (human)
#
# KEGG hsa04512.xml was used for omnibus construction at 2023/09/14
# Downloadable from https://www.kegg.jp/pathway/hsa04512
# Download > KGML > Save as "hsa04512.xml"
#
# We include the file with the script
kg <- parseKGML2DataFrame("hsa04512.xml")
kg$from <- gsub("hsa:","",kg$from)
kg$to <- gsub("hsa:","",kg$to)
kg$order <- c(1:nrow(kg))
kg.1 <- bitr(kg$from, fromType="ENTREZID", toType="SYMBOL", OrgDb="org.Hs.eg.db")
kg <- distinct(merge(kg,kg.1,by.x="from",by.y="ENTREZID"))
kg.1 <- bitr(kg$to, fromType="ENTREZID", toType="SYMBOL", OrgDb="org.Hs.eg.db")
kg <- distinct(merge(kg,kg.1,by.x="to",by.y="ENTREZID"))
kg <- distinct(kg[,c(6:7)])
colnames(kg) <- c("Gene1","Gene2")
kg$Gene1_Gene2 <- paste0(kg$Gene1, "_", kg$Gene2)
# 536 directional interactions
dim(kg)
kg$dir <- "LR"
kg.1 <- data.frame(Gene1 = kg$Gene2, Gene2 = kg$Gene1, Gene1_Gene2 = paste0(kg$Gene2,"_", kg$Gene1), dir = "RL")
kg <- rbind(kg, kg.1)
# 1072 non-directional interactions
dim(kg)
# Save interactions?
write.csv(kg, paste0(ref.d, "/", "KEGG-hsa04512_LR-RL.csv"), row.names=F)
# Cell surface interactions (non-integrin)
kg_surf <- kg[grepl("ITG",kg$Gene1_Gene2)!=T,]
dim(kg_surf) #330 interactions
# Save non-integrin interactions?
write.csv(kg_surf, paste0(ref.d, "/", "KEGG-hsa04512_surf.csv"), row.names=F)
# Integrin interactions
db <- subsetDB(CellChatDB=CellChatDB.human, search="ECM-Receptor", key="annotation")
db1 <- bind_rows(db[1])
db1 <- db1[db1$evidence=="KEGG: hsa04512",]
kg_itg <- data.frame(Ligand = db1$ligand, Receptor = db1$receptor, X = db1$receptor)
kg_itg$Receptor <- gsub("_", "-", kg_itg$Receptor)
kg_itg <- separate_wider_delim(kg_itg, cols=3, delim="_", names=c("ReceptorA", "ReceptorB"), too_few="align_start")
kg_itg$Ligand_Receptor <- paste0(kg_itg$Ligand,"_",kg_itg$Receptor)
dim(kg_itg) #421 interactions
# Save integrin interactions?
write.csv(kg_itg, paste0(ref.d, "/", "KEGG-hsa04512_ITG.csv"), row.names=F)
### CASE STUDY PART 1 ##########################################################
#
# Matrisome gene list. Human and mouse matrisome annotations from the Matrisome
# Project website can be downloaded manually from:
# url: https://sites.google.com/uic.edu/matrisome/matrisome-annotations/homo-sapiens
# file: "Download the complete Homo sapiens matrisome list (rev. 2014)"
# save: Download as Microsoft Excel
#
# url: https://sites.google.com/uic.edu/matrisome/matrisome-annotations/mus-musculus
# file: Download the complete Mus musculus matrisome list (rev. 2014)
# save: Download as Microsoft Excel
#
# This is the manual way, but we do it direcly
#hs <- as.data.frame(read_excel(paste0(dln.d, "/Hs_Matrisome_Masterlist_Naba et al_2012.xlsx"), sheet = "Hs_Matrisome_Masterlist"))
#mm <- as.data.frame(read_excel(paste0(dln.d, "/Mm_Matrisome_Masterlist_Naba et al_2012.xlsx"), sheet = "Mm_Matrisome_Masterlist"))
# This will obtain the sheets automatically
hs <- as.data.frame(gsheet2tbl("https://docs.google.com/spreadsheets/d/1GwwV3pFvsp7DKBbCgr8kLpf8Eh_xV8ks/edit?usp=sharing&ouid=102352631360008021621&rtpof=true&sd=true", sheetid = "Hs_Matrisome_Masterlist"))
mm <- as.data.frame(gsheet2tbl("https://docs.google.com/spreadsheets/d/1Te6n2q_cisXeirzBClK-VzA6T-zioOB5/edit?usp=sharing&ouid=102352631360008021621&rtpof=true&sd=true", sheetid = "Mm_Matrisome_Masterlist"))
# Human and mouse matrisome gene lists are combined, keeping the category and
# division columns.
hs <- hs[, c(1:3)]
mm <- mm[, c(1:3)]
mm[, 3] <- toupper(mm[, 3])
m.list <- rbind(hs, mm)
m.list <- unique(m.list)
colnames(m.list) <- c("Division", "Category", "Gene_Symbol")
sort(unique(m.list$Category))
sort(unique(kidney$Matrisome.Category.Gene1))
write.csv(m.list, paste0(ref.d, "/", "MATRISOME_Hs-Mm_masterlist.csv"), quote = F, row.names = F)
# Load the already created reference lists from file?
# gloss <- read.csv(paste0(ref.d, "/", "HuBMAP kidney_base lookup table.csv")) #cell type glossary
kidney$Population1 <- apply(kidney, 1, function(x){
r <- match(x[1], gloss$kid)
return(gloss$meta[r])
})
kidney$Population2 <- apply(kidney, 1, function(x){
r <- match(x[5], gloss$kid)
return(gloss$meta[r])
})
kidney$Pair <- paste0(kidney$Population1, "_", kidney$Population2)
kidney$Div1_Div2 <- paste0(kidney$Matrisome.Division.Gene1, "_", kidney$Matrisome.Division.Gene2)
kidney$Cat1_Cat2 <- paste0(kidney$Matrisome.Category.Gene1, "_", kidney$Matrisome.Category.Gene2)
kidney$Pair.type <- ifelse(kidney$Population1==kidney$Population2, "Homocellular", "Heterocellular")
# Save divisions and categories
write.csv(kidney, paste0(out.d, "/", "HKid_default_Div-Cat.csv"), row.names = F)
## Population Contribution ----
#meta <- read.csv(meta, paste0(ref.d, "/", "Azimuth kidney_demo_Seurat metadata.csv")) #Metadata for full scRNA-seq dataset
pops <- data.frame(Population = gloss$meta)
# Number of times each population appears in matricom output table as pop1 or pop2
for(i in 1:nrow(pops)){
x <- meta[pops$Population[i]==meta$celltype,]
pops$n.Pop[i] <- nrow(x)
x1 <- kidney[pops$Population[i]==kidney$Population1,]
x2 <- kidney[pops$Population[i]==kidney$Population2,]
x3 <- rbind(x1, x2)
pops$n.Expr[i] <- nrow(x3)
}
N.Pop <- sum(pops$n.Pop)
N.Expr <- sum(pops$n.Expr) # = 2*N.Itxns
pops$freq.Pop <- pops$n.Pop/N.Pop
pops$freq.Expr <- pops$n.Expr/N.Expr
pops$ctrb.Expr <- pops$freq.Expr / pops$freq.Pop
write.csv(pops, paste0(out.d, "/", "HKid_default_Pop Contrib.csv"), row.names = F) #Supplementary Table S4A
# CASE STUDY PART 2 ####
#kidney <- read.csv(paste0(ref.d, "/", "HKid_default_Div-Cat.csv"))
## Fibroblast Partner Contribution ----
fib <- kidney[kidney$Population1=="Fibroblast" | kidney$Population2=="Fibroblast",]
write.csv(fib, paste0(out.d, "/", "HKid_default_Div-Cat_Fib.csv"), row.names=F) #Supplementary Table S4B
hom <- fib[fib$Pair.type=="Homocellular",]
het <- fib[fib$Pair.type=="Heterocellular",]
part <- data.frame(Partner = unique(fib$Population1), n.Pop = 0, #same as pairs table where Pop1 = Fib
n.Comm = 0, n.MXMX = 0, n.NMX = 0, n.CC = 0, n.AA = 0, n.CA = 0, n.CN = 0, n.AN = 0)
part <- part[order(part$Partner),]
for(i in 1:nrow(part)){
x <- meta[part$Partner[i]==meta$celltype,]
part$n.Pop[i] <- nrow(x)
if(part$Partner[i]=="Fibroblast"){
x3 <- hom
} else {
x1 <- het[het$Population1==part$Partner[i],]
x2 <- het[het$Population2==part$Partner[i],]
x3 <- rbind(x1, x2)
}
part$n.Comm[i] <- nrow(x3)
part$n.MXMX[i] <- sum(grepl("Matrisome-Matrisome", x3$Type.of.communication))
part$n.NMX[i] <- sum(grepl("Non.matrisome-Matrisome", x3$Type.of.communication))
part$n.CC[i] <- sum(grepl("Core matrisome_Core matrisome", x3$Div1_Div2))
part$n.AA[i] <- sum(grepl("Matrisome-associated_Matrisome-associated", x3$Div1_Div2))
part$n.CA[i] <- sum(sum(grepl("Core matrisome_Matrisome-associated", x3$Div1_Div2)), sum(grepl("Matrisome-associated_Core matrisome", x3$Div1_Div2)))
part$n.CN[i] <- sum(sum(grepl("Core matrisome_Non.matrisome", x3$Div1_Div2)), sum(grepl("Non.matrisome_Core matrisome", x3$Div1_Div2)))
part$n.AN[i] <- sum(sum(grepl("Matrisome-associated_Non.matrisome", x3$Div1_Div2)), sum(grepl("Non.matrisome_Matrisome-associated", x3$Div1_Div2)))
}
N.Pop <- sum(part$n.Pop)
N.Comm <- sum(part$n.Comm)
part$p.MXMX <- part$n.MXMX / part$n.Comm
part$p.NMX <- part$n.NMX / part$n.Comm
part$p.CC <- part$n.CC / part$n.Comm
part$p.AA <- part$n.AA / part$n.Comm
part$p.CA <- part$n.CA / part$n.Comm
part$p.CN <- part$n.CN / part$n.Comm
part$p.AN <- part$n.AN / part$n.Comm
part$freq.Pop <- part$n.Pop / N.Pop
part$freq.Fib <- part$freq.Pop[part$Partner=="Fibroblast"]
part$freq.Comm <- part$n.Comm / N.Comm
part$ctrb.Comm <- (part$freq.Comm / part$freq.Pop) + (part$freq.Comm / part$freq.Fib)
part$ctrb_p.MXMX <- part$ctrb.Comm * part$p.MXMX
part$ctrb_p.NMX <- part$ctrb.Comm * part$p.NMX
part$ctrb_p.CC <- part$p.CC * part$ctrb.Comm
part$ctrb_p.AA <- part$p.AA * part$ctrb.Comm
part$ctrb_p.CA <- part$p.CA * part$ctrb.Comm
part$ctrb_p.CN <- part$p.CN * part$ctrb.Comm
part$ctrb_p.AN <- part$p.AN * part$ctrb.Comm
write.csv(part, paste0(out.d, "/", "HKid_default_Fib Pair Contrib.csv"), row.names=F) #Supplementary Table S4C
### Network: Matrisome-Matrisome only ----
fib.mxmx <- fib[fib$Type.of.communication=="Matrisome-Matrisome",]
mxmx <- data.frame(Partner = part$Partner, n.Pop = part$n.Pop, n.MXMX = part$n.MXMX,
n.CC = part$n.CC, n.AA = part$n.AA, n.CA = part$n.CA)
mxmx$pp.CC <- mxmx$n.CC / mxmx$n.MXMX
mxmx$pp.AA <- mxmx$n.AA / mxmx$n.MXMX
mxmx$pp.CA <- mxmx$n.CA / mxmx$n.MXMX
mxmx$freq.Pop <- part$freq.Pop
mxmx$freq.Fib <- part$freq.Pop[part$Partner=="Fibroblast"]
mxmx$freq.MXMX <- part$n.MXMX / sum(part$n.MXMX)
mxmx$ctrb.MXMX <- (mxmx$freq.MXMX/mxmx$freq.Fib) + (mxmx$freq.MXMX/mxmx$freq.Pop) #contrib. to only Matrisome-Matrisome network
mxmx$ctrb_pp.CC <- mxmx$pp.CC * mxmx$ctrb.MXMX
mxmx$ctrb_pp.AA <- mxmx$pp.AA * mxmx$ctrb.MXMX
mxmx$ctrb_pp.CA <- mxmx$pp.CA * mxmx$ctrb.MXMX
write.csv(mxmx, paste0(out.d, "/", "HKid_default_Fib Pair Contrib_MXMX.csv"), row.names=F) #Supplementary Table S4D
### Network: Non.matrisome-Matrisome only ----
fib.nmx <- fib[fib$Type.of.communication=="Non.matrisome-Matrisome",]
nmx <- data.frame(Partner = part$Partner, n.Pop = part$n.Pop,
n.NMX = part$n.NMX, n.CN = part$n.CN, n.AN = part$n.AN)
nmx$pp.CN <- nmx$n.CN / nmx$n.NMX
nmx$pp.AN <- nmx$n.AN / nmx$n.NMX
nmx$freq.Pop <- part$freq.Pop
nmx$freq.Fib <- part$freq.Pop[part$Partner=="Fibroblast"]
nmx$freq.NMX <- part$n.NMX / sum(part$n.NMX)
nmx$ctrb.NMX <- (nmx$freq.NMX/nmx$freq.Fib) + (nmx$freq.NMX/nmx$freq.Pop) #contrib. to only Non.matrisome-Matrisome network
nmx$ctrb_pp.CN <- nmx$pp.CN * nmx$ctrb.NMX
nmx$ctrb_pp.AN <- nmx$pp.AN * nmx$ctrb.NMX
write.csv(nmx, paste0(out.d, "/", "HKid_default_Fib Pair Contrib_NMX.csv"), row.names=F) #Supplementary Table S4E
# CASE STUDY PART 3 ----
#KEGG hsa04512 - MXMX interactions list
#kg <- read.csv(paste0(ref.d, "/", "KEGG-hsa04512_LR-RL.csv"))
## Fibroblast ECM-Receptors -----
#fib <- read.csv(paste0(ref.d, "/", "HKid_default_Div-Cat_Fib.csv")) #Supplementary Table S4B
# Subset: only ECM-R
fib$Gene1_Gene2 <- paste0(fib$Gene1,"_",fib$Gene2)
fib$check <- apply(fib, 1, function(x){
ifelse(x[21] %in% kg$Gene1_Gene2, "Y", "N")
})
ecmr <- fib[fib$check=="Y",1:22]
ecmr$dir <- apply(ecmr, 1, function(x){
r <- which(kg$Gene1_Gene2 == x[21])
ifelse(kg$dir[r]=="LR", "LR", "RL")
})
for(i in 1:nrow(ecmr)){
if(ecmr$dir[i]=="LR"){
ecmr$Ligand[i] <- ecmr$Gene1[i]
ecmr$Receptor[i] <- ecmr$Gene2[i]
ecmr$Sender[i] <- ecmr$Population1[i]
ecmr$Receiver[i] <- ecmr$Population2[i]
ecmr$DivL[i] <- ecmr$Matrisome.Division.Gene1[i]
ecmr$DivR[i] <- ecmr$Matrisome.Division.Gene2[i]
ecmr$CatL[i] <- ecmr$Matrisome.Category.Gene1[i]
ecmr$CatR[i] <- ecmr$Matrisome.Category.Gene2[i]
ecmr$DivL_DivR[i] <- ecmr$Div1_Div2[i]
ecmr$CatL_CatR[i] <- ecmr$Cat1_Cat2[i]
}else{
ecmr$Ligand[i] <- ecmr$Gene2[i]
ecmr$Receptor[i] <- ecmr$Gene1[i]
ecmr$Sender[i] <- ecmr$Population2[i]
ecmr$Receiver[i] <- ecmr$Population1[i]
ecmr$DivL[i] <- ecmr$Matrisome.Division.Gene2[i]
ecmr$DivR[i] <- ecmr$Matrisome.Division.Gene1[i]
ecmr$CatL[i] <- ecmr$Matrisome.Category.Gene2[i]
ecmr$CatR[i] <- ecmr$Matrisome.Category.Gene1[i]
ecmr$DivL_DivR[i] <- paste0(ecmr$Div2[i],"_",ecmr$Div1[i])
ecmr$CatL_CatR[i] <- paste0(ecmr$Cat2[i],"_",ecmr$Cat1[i])
}
}
dim(ecmr) #470 communications
# Subset: Sender = Fibroblast
ecmr.fib <- ecmr[ecmr$Sender=="Fibroblast",]
write.csv(ecmr.fib, paste0(out.d, "/", "HKid_default_Div-Cat_Fib ECM-R.csv"), row.names = F) #Supplementary Table S5A
## Gene lists ----
lig <- data.frame(Gene = unique(ecmr.fib$Ligand), Class = "Ligand")
rcpt <- data.frame(Gene = unique(ecmr.fib$Receptor), Class = "Receptor")
#Ligands
lig$Div <- "Non-matrisome"; lig$Cat <- "Non-matrisome"; lig$n.Expr <- 0; lig$freq.Expr <- 0;
for(i in 1:nrow(lig)){
lig$n.Expr[i] <- sum(grepl(lig$Gene[i], ecmr.fib$Ligand))
for(j in 1:nrow(m.list)){
if(lig$Gene[i] %in% m.list$Gene_Symbol[j]){
lig$Div[i] <- m.list$Division[j]
lig$Cat[i] <- m.list$Category[j]
} else{next}
}
}
lig$freq.Expr<- lig$n.Expr / sum(lig$n.Expr)
write.csv(lig, paste0(out.d, "/", "HKid_default_Fib Ligands.csv"), row.names=F) #Supplementary Table S5B
#Receptors
rcpt$Div <- "Non-matrisome"; rcpt$Cat <- "Non-matrisome"; rcpt$n.Expr <- 0; rcpt$freq.Expr <- 0;
for(i in 1:nrow(rcpt)){
rcpt$n.Expr[i] <- sum(grepl(rcpt$Gene[i], ecmr.fib$Receptor))
for(j in 1:nrow(m.list)){
if(rcpt$Gene[i] %in% m.list$Gene_Symbol[j]){
rcpt$Div[i] <- m.list$Division[j]
rcpt$Cat[i] <- m.list$Category[j]
} else{next}
}
}
rcpt$freq.Expr<- rcpt$n.Expr / sum(rcpt$n.Expr)
write.csv(rcpt, paste0(out.d, "/", "HKid_default_Fib Receptors.csv"), row.names=F) #Supplementary Table S5B
## Receiver Contribution ----
recv <- data.frame(Receiver = sort(unique(ecmr.fib$Receiver)))
recv$n.Comm <- 0
recv$n.Glyco_Aff <- 0; recv$n.Glyco_Non <- 0
recv$n.Col_Aff <- 0; recv$n.Col_Non <- 0
for(i in 1:nrow(recv)){
x <- ecmr.fib[recv$Receiver[i]==ecmr.fib$Receiver,]
recv$n.Comm[i] <- nrow(x)
recv$n.Glyco_Aff[i] <- sum(grepl("ECM glycoproteins_ECM-affiliated proteins", x$CatL_CatR))
recv$n.Glyco_Non[i] <- sum(grepl("ECM glycoproteins_Non.matrisome", x$CatL_CatR))
recv$n.Col_Aff[i] <- sum(grepl("Collagens_ECM-affiliated proteins", x$CatL_CatR))
recv$n.Col_Non[i] <- sum(grepl("Collagens_Non.matrisome", x$CatL_CatR))
}
N.Comm <- sum(recv$n.Comm)
recv$p.Glyco_Aff <- recv$n.Glyco_Aff / recv$n.Comm
recv$p.Glyco_Non <- recv$n.Glyco_Non / recv$n.Comm
recv$p.Col_Aff <- recv$n.Col_Aff / recv$n.Comm
recv$p.Col_Non <- recv$n.Col_Non / recv$n.Comm
#Contribution
#pops <- read.csv("HKid_default_Pop Contrib.csv")[,-c(4,6:7)] #Supplementary Table S4A
pops <- pops[,-c(4,6:7)]
recv$n.Send <-pops$n.Pop[10]
recv$n.Recv <- apply(recv, 1, function(x){
r <- match(x[1], pops$Population)
return(pops$n.Pop[r])
})
N.Pop <- sum(recv$n.Recv)
recv$freq.Send <- recv$n.Send / N.Pop
recv$freq.Recv <- recv$n.Recv / N.Pop
recv$freq.Comm <- recv$n.Comm / N.Comm
recv$ctrb.Comm <- (recv$freq.Comm/recv$freq.Send) + (recv$freq.Comm/recv$freq.Recv)
recv$ctrb_p.Glyco_Aff <- recv$ctrb.Comm * recv$p.Glyco_Aff
recv$ctrb_p.Glyco_Non <- recv$ctrb.Comm * recv$p.Glyco_Non
recv$ctrb_p.Col_Aff <- recv$ctrb.Comm * recv$p.Col_Aff
recv$ctrb_p.Col_Non <- recv$ctrb.Comm * recv$p.Col_Non
write.csv(recv, paste0(out.d, "/", "HKid_default_Fib Receiver Contrib.csv"), row.names = F) #Supplementary Table S5C
# CASE STUDY PART 4 ----
# Fibroblast Collagen Type VI ----
#ecmr.fib <- read.csv("HKid_default_Div-Cat_Fib ECM-R.csv") #Supplementary Table S5A
c6 <- ecmr.fib[grepl("COL6A1", ecmr.fib$Gene1_Gene2)==T |
grepl("COL6A2", ecmr.fib$Gene1_Gene2)==T |
grepl("COL6A3", ecmr.fib$Gene1_Gene2)==T,]
write.csv(c6, paste0(out.d, "/", "HKid_default_Div-Cat_Fib ECM-R_COL6.csv"), row.names=F) #Supplementary Table S5D
## Cell surface ----
kg_surf <- kg[grepl("ITG", kg$Gene1_Gene2)!=T,]
#KEGG COL6 list subset: non-integrin receptor genes only
kg_surf.c6 <- kg_surf[grepl("COL6A1", kg_surf$Gene1_Gene2)==T |
grepl("COL6A2", kg_surf$Gene1_Gene2)==T |
grepl("COL6A3", kg_surf$Gene1_Gene2)==T,] #Fib only expr a1, a2, a3
kg_surf.c6 <- kg_surf.c6[kg_surf.c6$dir=="LR",]
#COL6 ECM-R network subset: non-integrin receptor genes only
c6_surf <- c6[grepl("ITG", c6$Gene1_Gene2)!=T,]
#Find interactions
ref <- data.frame(Sender = "Fibroblast", Ligand = kg_surf.c6$Gene1,
Receiver = "", Receptor = kg_surf.c6$Gene2,
check = "")
recv.list <- sort(unique(c6_surf$Receiver))
z.Y <- list()
for(i in 1:length(recv.list)){
x <- c6_surf[c6_surf$Receiver==recv.list[i],]
y <- ref
y$Receiver <- recv.list[i]
y$check <- ifelse(y$Receptor %in% x$Receptor, "Y", "N")
z.Y[[i]] <- y[y$check=="Y",]
}
names(z.Y) <- recv.list
z.Y0 <- bind_rows(z.Y)
dim(z.Y0) #81 rows
write.csv(z.Y0, paste0(out.d, "/","HKid_default_Fib COL6-Surf_communications.csv"), row.names=F)
z.Y0$Ligand <- "COL6A1-COL6A2-COL6A3"
z.Y1 <- distinct(z.Y0)
dim(z.Y1) #27 rows
write.csv(z.Y1, paste0(out.d, "/", "HKid_default_Fib COL6-Surf_interactions.csv"), row.names=F) #Supplementary Table S5E
## Integrins ----
#kg_itg <- read.csv(paste0(ref.d, "/","KEGG-hsa04512_ITG.csv"))
#Ref list of alpha-beta integrin subunit pairs is from KEGG hsa04512
itg <- kg_itg[grepl("COL6A1", kg_itg$Ligand_Receptor)==T |
grepl("COL6A2", kg_itg$Ligand_Receptor)==T |
grepl("COL6A3", kg_itg$Ligand_Receptor)==T,]
c6_itg <- c6[grepl("ITG", c6$Gene1_Gene2)==T,]
recv.list <- sort(unique(c6_itg$Receiver))
ref <- data.frame(Sender = "Fibroblast", Ligand = itg$Ligand,
Receiver = "", Receptor = itg$Receptor,
ReceptorA = itg$ReceptorA, ReceptorB = itg$ReceptorB,
Lig_RcptA = paste0(itg$Ligand, "_",itg$ReceptorA),
Lig_RcptB = paste(itg$Ligand, "_", itg$ReceptorB),
checkLRA = "", checkLRB ="", check = "")
ref$Lig_RcptB <- gsub(" _ ","_",ref$Lig_RcptB)
zi.Y <- list()
for(i in 1:length(recv.list)){
x <- c6_itg[c6_itg$Receiver==recv.list[i],]
y <- ref
y$Receiver <- recv.list[i]
y$checkLRA <- ifelse(y$Lig_RcptA %in% x$Gene1_Gene2, "Y", "N")
y$checkLRB <- ifelse(y$Lig_RcptB %in% x$Gene1_Gene2, "Y", "N")
y$check <- paste0(y$checkLRA,y$checkLRB)
zi.Y[[i]] <- y[y$check!="NN",]
}
names(zi.Y) <- recv.list
zi.Y0 <- bind_rows(zi.Y)
dim(zi.Y0) #402
write.csv(zi.Y0, paste0(out.d, "/", "HKid_default_Fib COL6-ITG_communications.csv"), row.names=F)
zi.Y0$Ligand <- "COL6A1-COL6A2-COL6A3"
zi.Y1 <- distinct(zi.Y0[,c(1:6,11)])
dim(zi.Y1) #134
write.csv(zi.Y1, paste0(out.d, "/", "HKid_default_Fib COL6-ITG_interactions.csv"), row.names=F) #Supplementary Table S5F