-
Notifications
You must be signed in to change notification settings - Fork 209
/
Copy pathdirectCollocation.m
638 lines (504 loc) · 17.3 KB
/
directCollocation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
function soln = directCollocation(problem)
% soln = directCollocation(problem)
%
% OptimTraj utility function
%
% This function is designed to be called by either "trapezoid" or
% "hermiteSimpson". It actually calls FMINCON to solve the trajectory
% optimization problem.
%
% Analytic gradients are supported.
%
% NOTES:
%
% If analytic gradients are used, then the sparsity pattern is returned
% in the struct: soln.info.sparsityPattern. View it using spy().
%
%To make code more readable
G = problem.guess;
B = problem.bounds;
F = problem.func;
Opt = problem.options;
nGrid = length(F.weights);
flagGradObj = strcmp(Opt.nlpOpt.GradObj,'on');
flagGradCst = strcmp(Opt.nlpOpt.GradConstr,'on');
% Print out notice about analytic gradients
if Opt.verbose > 0
if flagGradObj
fprintf(' - using analytic gradients of objective function\n');
end
if flagGradCst
fprintf(' - using analytic gradients of constraint function\n');
end
fprintf('\n');
end
% Interpolate the guess at the grid-points for transcription:
guess.tSpan = G.time([1,end]);
guess.time = linspace(guess.tSpan(1), guess.tSpan(2), nGrid);
guess.state = interp1(G.time', G.state', guess.time')';
guess.control = interp1(G.time', G.control', guess.time')';
[zGuess, pack] = packDecVar(guess.time, guess.state, guess.control);
if flagGradCst || flagGradObj
gradInfo = grad_computeInfo(pack);
end
% Unpack all bounds:
tLow = linspace(B.initialTime.low, B.finalTime.low, nGrid);
xLow = [B.initialState.low, B.state.low*ones(1,nGrid-2), B.finalState.low];
uLow = B.control.low*ones(1,nGrid);
zLow = packDecVar(tLow,xLow,uLow);
tUpp = linspace(B.initialTime.upp, B.finalTime.upp, nGrid);
xUpp = [B.initialState.upp, B.state.upp*ones(1,nGrid-2), B.finalState.upp];
uUpp = B.control.upp*ones(1,nGrid);
zUpp = packDecVar(tUpp,xUpp,uUpp);
%%%% Set up problem for fmincon:
if flagGradObj
P.objective = @(z)( ...
myObjGrad(z, pack, F.pathObj, F.bndObj, F.weights, gradInfo) ); %Analytic gradients
[~, objGradInit] = P.objective(zGuess);
sparsityPattern.objective = (objGradInit~=0)'; % Only used for visualization!
else
P.objective = @(z)( ...
myObjective(z, pack, F.pathObj, F.bndObj, F.weights) ); %Numerical gradients
end
if flagGradCst
P.nonlcon = @(z)( ...
myCstGrad(z, pack, F.dynamics, F.pathCst, F.bndCst, F.defectCst, gradInfo) ); %Analytic gradients
[~,~,cstIneqInit,cstEqInit] = P.nonlcon(zGuess);
sparsityPattern.equalityConstraint = (cstEqInit~=0)'; % Only used for visualization!
sparsityPattern.inequalityConstraint = (cstIneqInit~=0)'; % Only used for visualization!
else
P.nonlcon = @(z)( ...
myConstraint(z, pack, F.dynamics, F.pathCst, F.bndCst, F.defectCst) ); %Numerical gradients
end
P.x0 = zGuess;
P.lb = zLow;
P.ub = zUpp;
P.Aineq = []; P.bineq = [];
P.Aeq = []; P.beq = [];
P.options = Opt.nlpOpt;
P.solver = 'fmincon';
%%%% Call fmincon to solve the non-linear program (NLP)
tic;
[zSoln, objVal,exitFlag,output] = fmincon(P);
[tSoln,xSoln,uSoln] = unPackDecVar(zSoln,pack);
nlpTime = toc;
%%%% Store the results:
soln.grid.time = tSoln;
soln.grid.state = xSoln;
soln.grid.control = uSoln;
soln.interp.state = @(t)( interp1(tSoln',xSoln',t','linear',nan)' );
soln.interp.control = @(t)( interp1(tSoln',uSoln',t','linear',nan)' );
soln.info = output;
soln.info.nlpTime = nlpTime;
soln.info.exitFlag = exitFlag;
soln.info.objVal = objVal;
if flagGradCst || flagGradObj % Then return sparsity pattern for visualization
if flagGradObj
[~, objGradInit] = P.objective(zSoln);
sparsityPattern.objective = (objGradInit~=0)';
end
if flagGradCst
[~,~,cstIneqInit,cstEqInit] = P.nonlcon(zSoln);
sparsityPattern.equalityConstraint = (cstEqInit~=0)';
sparsityPattern.inequalityConstraint = (cstIneqInit~=0)';
end
soln.info.sparsityPattern = sparsityPattern;
end
soln.problem = problem; % Return the fully detailed problem struct
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
%%%% SUB FUNCTIONS %%%%
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function [z,pack] = packDecVar(t,x,u)
%
% This function collapses the time (t), state (x)
% and control (u) matricies into a single vector
%
% INPUTS:
% t = [1, nTime] = time vector (grid points)
% x = [nState, nTime] = state vector at each grid point
% u = [nControl, nTime] = control vector at each grid point
%
% OUTPUTS:
% z = column vector of 2 + nTime*(nState+nControl) decision variables
% pack = details about how to convert z back into t,x, and u
% .nTime
% .nState
% .nControl
%
nTime = length(t);
nState = size(x,1);
nControl = size(u,1);
tSpan = [t(1); t(end)];
xCol = reshape(x, nState*nTime, 1);
uCol = reshape(u, nControl*nTime, 1);
indz = reshape(2+(1:numel(u)+numel(x)),nState+nControl,nTime);
% index of time, state, control variables in the decVar vector
tIdx = 1:2;
xIdx = indz(1:nState,:);
uIdx = indz(nState+(1:nControl),:);
% decision variables
% variables are indexed so that the defects gradients appear as a banded
% matrix
z = zeros(2+numel(indz),1);
z(tIdx(:),1) = tSpan;
z(xIdx(:),1) = xCol;
z(uIdx(:),1) = uCol;
pack.nTime = nTime;
pack.nState = nState;
pack.nControl = nControl;
pack.tIdx = tIdx;
pack.xIdx = xIdx;
pack.uIdx = uIdx;
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function [t,x,u] = unPackDecVar(z,pack)
%
% This function unpacks the decision variables for
% trajectory optimization into the time (t),
% state (x), and control (u) matricies
%
% INPUTS:
% z = column vector of 2 + nTime*(nState+nControl) decision variables
% pack = details about how to convert z back into t,x, and u
% .nTime
% .nState
% .nControl
%
% OUTPUTS:
% t = [1, nTime] = time vector (grid points)
% x = [nState, nTime] = state vector at each grid point
% u = [nControl, nTime] = control vector at each grid point
%
nTime = pack.nTime;
nState = pack.nState;
nControl = pack.nControl;
t = linspace(z(1),z(2),nTime);
x = z(pack.xIdx);
u = z(pack.uIdx);
% make sure x and u are returned as vectors, [nState,nTime] and
% [nControl,nTime]
x = reshape(x,nState,nTime);
u = reshape(u,nControl,nTime);
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function cost = myObjective(z,pack,pathObj,bndObj,weights)
%
% This function unpacks the decision variables, sends them to the
% user-defined objective functions, and then returns the final cost
%
% INPUTS:
% z = column vector of decision variables
% pack = details about how to convert decision variables into t,x, and u
% pathObj = user-defined integral objective function
% endObj = user-defined end-point objective function
%
% OUTPUTS:
% cost = scale cost for this set of decision variables
%
[t,x,u] = unPackDecVar(z,pack);
% Compute the cost integral along trajectory
if isempty(pathObj)
integralCost = 0;
else
dt = (t(end)-t(1))/(pack.nTime-1);
integrand = pathObj(t,x,u); %Calculate the integrand of the cost function
integralCost = dt*integrand*weights; %Trapazoidal integration
end
% Compute the cost at the boundaries of the trajectory
if isempty(bndObj)
bndCost = 0;
else
t0 = t(1);
tF = t(end);
x0 = x(:,1);
xF = x(:,end);
bndCost = bndObj(t0,x0,tF,xF);
end
cost = bndCost + integralCost;
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function [c, ceq] = myConstraint(z,pack,dynFun, pathCst, bndCst, defectCst)
%
% This function unpacks the decision variables, computes the defects along
% the trajectory, and then evaluates the user-defined constraint functions.
%
% INPUTS:
% z = column vector of decision variables
% pack = details about how to convert decision variables into t,x, and u
% dynFun = user-defined dynamics function
% pathCst = user-defined constraints along the path
% endCst = user-defined constraints at the boundaries
%
% OUTPUTS:
% c = inequality constraints to be passed to fmincon
% ceq = equality constraints to be passed to fmincon
%
[t,x,u] = unPackDecVar(z,pack);
%%%% Compute defects along the trajectory:
dt = (t(end)-t(1))/(length(t)-1);
f = dynFun(t,x,u);
defects = defectCst(dt,x,f);
%%%% Call user-defined constraints and pack up:
[c, ceq] = collectConstraints(t,x,u,defects, pathCst, bndCst);
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
%%%% Additional Sub-Functions for Gradients %%%%
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function gradInfo = grad_computeInfo(pack)
%
% This function computes the matrix dimensions and indicies that are used
% to map the gradients from the user functions to the gradients needed by
% fmincon. The key difference is that the gradients in the user functions
% are with respect to their input (t,x,u) or (t0,x0,tF,xF), while the
% gradients for fmincon are with respect to all decision variables.
%
% INPUTS:
% nDeVar = number of decision variables
% pack = details about packing and unpacking the decision variables
% .nTime
% .nState
% .nControl
%
% OUTPUTS:
% gradInfo = details about how to transform gradients
%
nTime = pack.nTime;
nState = pack.nState;
nControl = pack.nControl;
nDecVar = 2 + nState*nTime + nControl*nTime;
zIdx = 1:nDecVar;
gradInfo.nDecVar = nDecVar;
[tIdx, xIdx, uIdx] = unPackDecVar(zIdx,pack);
gradInfo.tIdx = tIdx([1,end]);
gradInfo.xuIdx = [xIdx;uIdx];
%%%% Compute gradients of time:
% alpha = (0..N-1)/(N-1)
% t = alpha*tUpp + (1-alpha)*tLow
alpha = (0:(nTime-1))/(nTime-1);
gradInfo.alpha = [1-alpha; alpha];
if (gradInfo.tIdx(1)~=1 || gradInfo.tIdx(end)~=2)
error('The first two decision variables must be the initial and final time')
end
gradInfo.dtGrad = [-1; 1]/(nTime-1);
%%%% Compute gradients of state
gradInfo.xGrad = zeros(nState,nTime,nDecVar);
for iTime=1:nTime
for iState=1:nState
gradInfo.xGrad(iState,iTime,xIdx(iState,iTime)) = 1;
end
end
%%%% For unpacking the boundary constraints and objective:
gradInfo.bndIdxMap = [tIdx(1); xIdx(:,1); tIdx(end); xIdx(:,end)];
end
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo)
% [c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,defects, defectsGrad, pathCst, bndCst, gradInfo)
%
% OptimTraj utility function.
%
% Collects the defects, calls user-defined constraints, and then packs
% everything up into a form that is good for fmincon. Additionally, it
% reshapes and packs up the gradients of these constraints.
%
% INPUTS:
% t = time vector
% x = state matrix
% u = control matrix
% defects = defects matrix
% pathCst = user-defined path constraint function
% bndCst = user-defined boundary constraint function
%
% OUTPUTS:
% c = inequality constraint for fmincon
% ceq = equality constraint for fmincon
%
ceq_dyn = reshape(defects,numel(defects),1);
ceq_dynGrad = grad_flattenPathCst(defectsGrad);
%%%% Compute the user-defined constraints:
if isempty(pathCst)
c_path = [];
ceq_path = [];
c_pathGrad = [];
ceq_pathGrad = [];
else
[c_pathRaw, ceq_pathRaw, c_pathGradRaw, ceq_pathGradRaw] = pathCst(t,x,u);
c_path = reshape(c_pathRaw,numel(c_pathRaw),1);
ceq_path = reshape(ceq_pathRaw,numel(ceq_pathRaw),1);
c_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(c_pathGradRaw,gradInfo));
ceq_pathGrad = grad_flattenPathCst(grad_reshapeContinuous(ceq_pathGradRaw,gradInfo));
end
if isempty(bndCst)
c_bnd = [];
ceq_bnd = [];
c_bndGrad = [];
ceq_bndGrad = [];
else
t0 = t(1);
tF = t(end);
x0 = x(:,1);
xF = x(:,end);
[c_bnd, ceq_bnd, c_bndGradRaw, ceq_bndGradRaw] = bndCst(t0,x0,tF,xF);
c_bndGrad = grad_reshapeBoundary(c_bndGradRaw,gradInfo);
ceq_bndGrad = grad_reshapeBoundary(ceq_bndGradRaw,gradInfo);
end
%%%% Pack everything up:
c = [c_path;c_bnd];
ceq = [ceq_dyn; ceq_path; ceq_bnd];
cGrad = [c_pathGrad;c_bndGrad]';
ceqGrad = [ceq_dynGrad; ceq_pathGrad; ceq_bndGrad]';
end
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function C = grad_flattenPathCst(CC)
%
% This function takes a path constraint and reshapes the first two
% dimensions so that it can be passed to fmincon
%
if isempty(CC)
C = [];
else
[n1,n2,n3] = size(CC);
C = reshape(CC,n1*n2,n3);
end
end
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function CC = grad_reshapeBoundary(C,gradInfo)
%
% This function takes a boundary constraint or objective from the user
% and expands it to match the full set of decision variables
%
CC = zeros(size(C,1),gradInfo.nDecVar);
CC(:,gradInfo.bndIdxMap) = C;
end
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function grad = grad_reshapeContinuous(gradRaw,gradInfo)
% grad = grad_reshapeContinuous(gradRaw,gradInfo)
%
% OptimTraj utility function.
%
% This function converts the raw gradients from the user function into
% gradients with respect to the decision variables.
%
% INPUTS:
% stateRaw = [nOutput,nInput,nTime]
%
% OUTPUTS:
% grad = [nOutput,nTime,nDecVar]
%
if isempty(gradRaw)
grad = [];
else
[nOutput, ~, nTime] = size(gradRaw);
grad = zeros(nOutput,nTime,gradInfo.nDecVar);
% First, loop through and deal with time.
timeGrad = gradRaw(:,1,:); timeGrad = permute(timeGrad,[1,3,2]);
for iOutput=1:nOutput
A = ([1;1]*timeGrad(iOutput,:)).*gradInfo.alpha;
grad(iOutput,:,gradInfo.tIdx) = permute(A,[3,2,1]);
end
% Now deal with state and control:
for iOutput=1:nOutput
for iTime=1:nTime
B = gradRaw(iOutput,2:end,iTime);
grad(iOutput,iTime,gradInfo.xuIdx(:,iTime)) = permute(B,[3,1,2]);
end
end
end
end
%%%% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %%%%
function [cost, costGrad] = myObjGrad(z,pack,pathObj,bndObj,weights,gradInfo)
%
% This function unpacks the decision variables, sends them to the
% user-defined objective functions, and then returns the final cost
%
% INPUTS:
% z = column vector of decision variables
% pack = details about how to convert decision variables into t,x, and u
% pathObj = user-defined integral objective function
% endObj = user-defined end-point objective function
%
% OUTPUTS:
% cost = scale cost for this set of decision variables
%
%Unpack the decision variables:
[t,x,u] = unPackDecVar(z,pack);
% Time step for integration:
dt = (t(end)-t(1))/(length(t)-1);
dtGrad = gradInfo.dtGrad;
nTime = length(t);
nState = size(x,1);
nControl = size(u,1);
nDecVar = length(z);
% Compute the cost integral along the trajectory
if isempty(pathObj)
integralCost = 0;
integralCostGrad = zeros(nState+nControl,1);
else
% Objective function integrand and gradients:
[obj, objGradRaw] = pathObj(t,x,u);
nInput = size(objGradRaw,1);
objGradRaw = reshape(objGradRaw,1,nInput,nTime);
objGrad = grad_reshapeContinuous(objGradRaw,gradInfo);
% integral objective function
unScaledIntegral = obj*weights;
integralCost = dt*unScaledIntegral;
% Gradient of integral objective function
dtGradTerm = zeros(1,nDecVar);
dtGradTerm(1) = dtGrad(1)*unScaledIntegral;
dtGradTerm(2) = dtGrad(2)*unScaledIntegral;
objGrad = reshape(objGrad,nTime,nDecVar);
integralCostGrad = ...
dtGradTerm + ...
dt*sum(objGrad.*(weights*ones(1,nDecVar)),1);
end
% Compute the cost at the boundaries of the trajectory
if isempty(bndObj)
bndCost = 0;
bndCostGrad = zeros(1,nDecVar);
else
t0 = t(1);
tF = t(end);
x0 = x(:,1);
xF = x(:,end);
[bndCost, bndCostGradRaw] = bndObj(t0,x0,tF,xF);
bndCostGrad = grad_reshapeBoundary(bndCostGradRaw,gradInfo);
end
% Cost function
cost = bndCost + integralCost;
% Gradients
costGrad = bndCostGrad + integralCostGrad;
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function [c, ceq, cGrad, ceqGrad] = myCstGrad(z,pack,dynFun, pathCst, bndCst, defectCst, gradInfo)
%
% This function unpacks the decision variables, computes the defects along
% the trajectory, and then evaluates the user-defined constraint functions.
%
% INPUTS:
% z = column vector of decision variables
% pack = details about how to convert decision variables into t,x, and u
% dynFun = user-defined dynamics function
% pathCst = user-defined constraints along the path
% endCst = user-defined constraints at the boundaries
%
% OUTPUTS:
% c = inequality constraints to be passed to fmincon
% ceq = equality constraints to be passed to fmincon
%
%Unpack the decision variables:
[t,x,u] = unPackDecVar(z,pack);
% Time step for integration:
dt = (t(end)-t(1))/(length(t)-1);
dtGrad = gradInfo.dtGrad;
% Gradient of the state with respect to decision variables
xGrad = gradInfo.xGrad;
%%%% Compute defects along the trajectory:
[f, fGradRaw] = dynFun(t,x,u);
fGrad = grad_reshapeContinuous(fGradRaw,gradInfo);
[defects, defectsGrad] = defectCst(dt,x,f,...
dtGrad, xGrad, fGrad);
% Compute gradients of the user-defined constraints and then pack up:
[c, ceq, cGrad, ceqGrad] = grad_collectConstraints(t,x,u,...
defects, defectsGrad, pathCst, bndCst, gradInfo);
end