-
Notifications
You must be signed in to change notification settings - Fork 209
/
Copy pathgpopsWrapper.m
164 lines (130 loc) · 5.64 KB
/
gpopsWrapper.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
function soln = gpopsWrapper(problem)
% soln = gpopsWrapper(problem)
%
% This function is a wrapper that converts the standard input for optimTraj
% into a call to GPOPS2, a commercially available transcription software
% for matlab. You can purchase and download it at http://www.gpops2.com/
%
% GPOPS2 implements an adaptive transcription method - it adjusts both the
% number of trajectory segments and the order of the interpolating
% polynomial in each segment. Many GPOPS features are available in OptimTraj,
% but not all. Notably, OptimTraj cannot solve multi-phase problems.
%
% Set any special GPOPS options by storing the 'setup' sturuct in the
% problem.options.gpops struct.
%
% If using SNOPT, be careful about any constant terms in your constraints.
% When using numerical gradients, SNOPT drops any constant terms in your
% constraints, which is why it has non-zero bounds. This is exactly the
% opposite of the convention that FMINCON uses, where all constraint bounds
% must be zero. If your constraints have non-zero bounds, and you would
% like to use GPOPS with SNOPT as the solver, then manually set the fields
% in problem.gpops.phase.bounds.path and problem.gpops.eventgroup to
% include these bounds, and then remove them from the constraint function.
%
% Print out some solver info if desired:
if problem.options.verbose > 0
disp('Transcription using GPOPS2');
end
% Copy the problem specification
setup = problem.options.gpops;
setup.bounds.phase.initialtime.lower = problem.bounds.initialTime.low';
setup.bounds.phase.initialtime.upper = problem.bounds.initialTime.upp';
setup.bounds.phase.finaltime.lower = problem.bounds.finalTime.low';
setup.bounds.phase.finaltime.upper = problem.bounds.finalTime.upp';
setup.bounds.phase.initialstate.lower = problem.bounds.initialState.low';
setup.bounds.phase.initialstate.upper = problem.bounds.initialState.upp';
setup.bounds.phase.finalstate.lower = problem.bounds.finalState.low';
setup.bounds.phase.finalstate.upper = problem.bounds.finalState.upp';
setup.bounds.phase.state.lower = problem.bounds.state.low';
setup.bounds.phase.state.upper = problem.bounds.state.upp';
setup.bounds.phase.control.lower = problem.bounds.control.low';
setup.bounds.phase.control.upper = problem.bounds.control.upp';
setup.guess.phase.time = problem.guess.time';
setup.guess.phase.state = problem.guess.state';
setup.guess.phase.control = problem.guess.control';
% Configure bounds on the path constraints
if ~isempty(problem.func.pathCst)
if ~isfield(setup.bounds.phase, 'path')
[cTest, ceqTest] = problem.func.pathCst(...
problem.guess.time,problem.guess.state,problem.guess.control);
nc = size(cTest,1);
nceq = size(ceqTest,1);
setup.bounds.phase.path.lower = [-inf(1,nc), zeros(1,nceq)];
setup.bounds.phase.path.upper = zeros(1,nc+nceq);
end
end
% Configure bounds on the endpoint constraints
if ~isempty(problem.func.bndCst)
if ~isfield(setup.bounds, 'eventgroup')
t0 = problem.guess.time(1); tF = problem.guess.time(end);
x0 = problem.guess.state(:,1); xF = problem.guess.state(:,end);
[cTest, ceqTest] = problem.func.bndCst(t0, x0,tF,xF);
nc = size(cTest,1);
nceq = size(ceqTest,1);
setup.bounds.eventgroup.lower = [-inf(1,nc), zeros(1,nceq)];
setup.bounds.eventgroup.upper = zeros(1,nc+nceq);
end
end
F = problem.func;
setup.functions.continuous = @(input)( gpops_continuous(input,F.dynamics,F.pathObj,F.pathCst) );
setup.functions.endpoint = @(input)( gpops_endpoint(input,F.bndObj,F.bndCst) );
%%%% KEY LINE: Solve the optimization problem with GPOPS II
output = gpops2(setup);
% Pack up the results:
soln.grid.time = output.result.solution.phase.time';
soln.grid.state = output.result.solution.phase.state';
soln.grid.control = output.result.solution.phase.control';
tSoln = output.result.interpsolution.phase.time';
xSoln = output.result.interpsolution.phase.state';
uSoln = output.result.interpsolution.phase.control';
soln.interp.state = @(t)( interp1(tSoln',xSoln',t','pchip',nan)' );
soln.interp.control = @(t)( interp1(tSoln',uSoln',t','pchip',nan)' );
soln.info.nlpTime = output.totaltime;
soln.info.objVal = output.result.objective;
soln.info.gpops.meshcounts = output.meshcounts;
soln.info.gpops.result.maxerror = output.result.maxerror;
soln.info.gpops.result.nlpinfo = output.result.nlpinfo;
soln.info.gpops.result.setup = output.result.setup;
soln.problem = problem;
soln.problem.options.nlpOpt = []; % did not use the fmincon options
end
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
%%%% SUB FUNCTIONS %%%%
%%%%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%%%%
function output = gpops_endpoint(input,bndObj,bndCst)
%
% The endpoint function contains the boundary constraints and objective
% functions for the trajectory optimization problem.
%
t0 = input.phase.initialtime;
tF = input.phase.finaltime;
x0 = input.phase.initialstate';
xF = input.phase.finalstate';
if isempty(bndObj)
output.objective = input.phase.integral;
else
output.objective = input.phase.integral + bndObj(t0,x0,tF,xF);
end
if ~isempty(bndCst)
[c, ceq] = bndCst(t0,x0,tF,xF);
output.eventgroup.event = [c;ceq]';
end
end
function output = gpops_continuous(input,dynamics,pathObj,pathCst)
%
% The continuous function contains the path objective, dynamics, and path
% constraint functions.
%
t = input.phase.time';
x = input.phase.state';
u = input.phase.control';
f = dynamics(t,x,u);
c = pathObj(t,x,u);
output.dynamics = f';
output.integrand = c';
if ~isempty(pathCst)
[c, ceq] = pathCst(t,x,u);
output.path = [c;ceq]';
end
end