-
Notifications
You must be signed in to change notification settings - Fork 248
/
run_KDD_15_CollaborativeDL.py
207 lines (137 loc) · 9.16 KB
/
run_KDD_15_CollaborativeDL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on 22/11/17
@author: Maurizio Ferrari Dacrema
"""
from Recommender_import_list import *
from Conferences.KDD.CollaborativeDL_our_interface.CollaborativeDL_Matlab_RecommenderWrapper import CollaborativeDL_Matlab_RecommenderWrapper
from ParameterTuning.run_parameter_search import runParameterSearch_Collaborative, runParameterSearch_Content, runParameterSearch_Hybrid
from ParameterTuning.SearchSingleCase import SearchSingleCase
from ParameterTuning.SearchAbstractClass import SearchInputRecommenderArgs
import os, traceback, argparse
import numpy as np
from Utils.ResultFolderLoader import ResultFolderLoader, generate_latex_hyperparameters
from Utils.assertions_on_data_for_experiments import assert_implicit_data, assert_disjoint_matrices
def read_data_split_and_search(dataset_variant, train_interactions,
flag_baselines_tune = False,
flag_DL_article_default = False, flag_DL_tune = False,
flag_print_results = False):
# Using dataReader from CollaborativeVAE_our_interface as they use the same data in the same way
from Conferences.KDD.CollaborativeVAE_our_interface.Citeulike.CiteulikeReader import CiteulikeReader
result_folder_path = "result_experiments/{}/{}_citeulike_{}_{}/".format(CONFERENCE_NAME, ALGORITHM_NAME, dataset_variant, train_interactions)
result_folder_path_CollaborativeVAE = "result_experiments/{}/{}_citeulike_{}_{}/".format(CONFERENCE_NAME, "CollaborativeVAE", dataset_variant, train_interactions)
dataset = CiteulikeReader(result_folder_path_CollaborativeVAE, dataset_variant = dataset_variant, train_interactions = train_interactions)
URM_train = dataset.URM_DICT["URM_train"].copy()
URM_validation = dataset.URM_DICT["URM_validation"].copy()
URM_test = dataset.URM_DICT["URM_test"].copy()
# Ensure IMPLICIT data
assert_implicit_data([URM_train, URM_validation, URM_test])
# Due to the sparsity of the dataset, choosing an evaluation as subset of the train
# While keepning validation interaction in the train set
if train_interactions == 1:
# In this case the train data will contain validation data to avoid cold users
assert_disjoint_matrices([URM_train, URM_test])
assert_disjoint_matrices([URM_validation, URM_test])
exclude_seen_validation = False
URM_train_last_test = URM_train
else:
assert_disjoint_matrices([URM_train, URM_validation, URM_test])
exclude_seen_validation = True
URM_train_last_test = URM_train + URM_validation
assert_implicit_data([URM_train_last_test])
# If directory does not exist, create
if not os.path.exists(result_folder_path):
os.makedirs(result_folder_path)
from Base.Evaluation.Evaluator import EvaluatorHoldout
evaluator_validation = EvaluatorHoldout(URM_validation, cutoff_list=[150], exclude_seen = exclude_seen_validation)
evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[50, 100, 150, 200, 250, 300])
################################################################################################
######
###### DL ALGORITHM
######
if flag_DL_article_default:
try:
collaborativeDL_article_hyperparameters = {
"para_lv": 10,
"para_lu": 1,
"para_ln": 1e3,
"batch_size": 128,
"epoch_sdae": 200,
"epoch_dae": 200,
}
parameterSearch = SearchSingleCase(CollaborativeDL_Matlab_RecommenderWrapper,
evaluator_validation=evaluator_validation,
evaluator_test=evaluator_test)
recommender_input_args = SearchInputRecommenderArgs(
CONSTRUCTOR_POSITIONAL_ARGS = [URM_train, dataset.ICM_DICT["ICM_tokens_TFIDF"]],
FIT_KEYWORD_ARGS = {})
recommender_input_args_last_test = recommender_input_args.copy()
recommender_input_args_last_test.CONSTRUCTOR_POSITIONAL_ARGS[0] = URM_train_last_test
parameterSearch.search(recommender_input_args,
recommender_input_args_last_test = recommender_input_args_last_test,
fit_hyperparameters_values=collaborativeDL_article_hyperparameters,
output_folder_path = result_folder_path,
resume_from_saved = True,
output_file_name_root = CollaborativeDL_Matlab_RecommenderWrapper.RECOMMENDER_NAME)
except Exception as e:
print("On recommender {} Exception {}".format(CollaborativeDL_Matlab_RecommenderWrapper, str(e)))
traceback.print_exc()
################################################################################################
######
###### PRINT RESULTS
######
if flag_print_results:
n_test_users = np.sum(np.ediff1d(URM_test.indptr)>=1)
ICM_names_to_report_list = list(dataset.ICM_DICT.keys())
dataset_name = "{}_{}".format(dataset_variant, train_interactions)
file_name = "{}..//{}_{}_".format(result_folder_path, ALGORITHM_NAME, dataset_name)
result_loader = ResultFolderLoader(result_folder_path,
base_algorithm_list = None,
other_algorithm_list = [CollaborativeDL_Matlab_RecommenderWrapper],
KNN_similarity_list = KNN_similarity_to_report_list,
ICM_names_list = ICM_names_to_report_list,
UCM_names_list = None)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("article_metrics"),
metrics_list = ["RECALL"],
cutoffs_list = [50, 100, 150, 200, 250, 300],
table_title = None,
highlight_best = True)
result_loader.generate_latex_results(file_name + "{}_latex_results.txt".format("all_metrics"),
metrics_list = ["PRECISION", "RECALL", "MAP_MIN_DEN", "MRR", "NDCG", "F1", "HIT_RATE", "ARHR_ALL_HITS",
"NOVELTY", "DIVERSITY_MEAN_INTER_LIST", "DIVERSITY_HERFINDAHL", "COVERAGE_ITEM", "DIVERSITY_GINI", "SHANNON_ENTROPY"],
cutoffs_list = [150],
table_title = None,
highlight_best = True)
result_loader.generate_latex_time_statistics(file_name + "{}_latex_results.txt".format("time"),
n_evaluation_users=n_test_users,
table_title = None)
if __name__ == '__main__':
ALGORITHM_NAME = "CollaborativeDL"
CONFERENCE_NAME = "KDD"
parser = argparse.ArgumentParser()
parser.add_argument('-b', '--baseline_tune', help="Baseline hyperparameter search", type = bool, default = False)
parser.add_argument('-a', '--DL_article_default', help="Train the DL model with article hyperparameters", type = bool, default = False)
parser.add_argument('-p', '--print_results', help="Print results", type = bool, default = True)
input_flags = parser.parse_args()
print(input_flags)
KNN_similarity_to_report_list = ["cosine", "dice", "jaccard", "asymmetric", "tversky"]
dataset_variant_list = ["a", "t"]
train_interactions_list = [1, 10]
for dataset_variant in dataset_variant_list:
for train_interactions in train_interactions_list:
read_data_split_and_search(dataset_variant, train_interactions,
flag_baselines_tune=input_flags.baseline_tune,
flag_DL_article_default= input_flags.DL_article_default,
flag_print_results = input_flags.print_results,
)
if input_flags.print_results:
generate_latex_hyperparameters(result_folder_path ="result_experiments/{}/".format(CONFERENCE_NAME),
algorithm_name= ALGORITHM_NAME,
experiment_subfolder_list = [
"citeulike_{}_{}".format(dataset_variant, train_interactions) for dataset_variant in dataset_variant_list for train_interactions in train_interactions_list
],
ICM_names_to_report_list = ["ICM_tokens_TFIDF", "ICM_tokens_bool"],
KNN_similarity_to_report_list = KNN_similarity_to_report_list,
other_algorithm_list = [CollaborativeDL_Matlab_RecommenderWrapper],
split_per_algorithm_type = True)