forked from worldbank/sdgatlas2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sdg15.R
376 lines (328 loc) · 14.3 KB
/
sdg15.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
library(wbgdata)
library(wbgcharts)
library(wbggeo)
library(wbgmaps)
library(ggplot2)
library(dplyr)
library(tidyr)
library(ggtreemap) # devtools::install_github("econandrew/ggtreemap")
library(stringr)
library(readr)
library(countrycode)
library(forcats)
library(pdftools)
source("styles.R")
fig_sdg15_forest_area_share <- function(year = 2015, cum_cover = 2/3) {
indicator <- c("AG.LND.FRST.K2")
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = year,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg15_forest_area_share.csv"
)
df <- df %>% filter(complete.cases(.))
label_countries <- df %>%
arrange(-AG.LND.FRST.K2) %>%
mutate(prop_cumul = cumsum(AG.LND.FRST.K2) / sum(AG.LND.FRST.K2)) %>%
filter(lag(prop_cumul, default = 0) < cum_cover) %>%
pull(iso3c)
df <- df %>% left_join(wbgref$countries$regions, by = "iso3c")
df <- df %>%
mutate(iso3c = ifelse(iso3c %in% label_countries, iso3c, "WLD")) %>%
mutate(region_iso3c = ifelse(iso3c %in% label_countries, region_iso3c, "WLD"))
df <- df %>%
group_by(date, region_iso3c, iso3c) %>%
summarise(AG.LND.FRST.K2 = sum(AG.LND.FRST.K2))
figure(
data = df,
plot = function(df, style = style_atlas()) {
labeller <- c(wbgref$countries$labels, WLD = "Rest of the world")
colors <- c(WLD = style$colors$spot.secondary.light, style$colors$regions)
aspect.ratio = 1
ggplot(df, aes(area = AG.LND.FRST.K2, subgroup = (region_iso3c == "WLD"), fill = region_iso3c)) +
geom_rect(stat = "treemap", color = "white", aspect.ratio = aspect.ratio) +
geom_text(
aes(
label = str_wrap_lines(labeller[iso3c],3,force=TRUE),
size = cut(AG.LND.FRST.K2, c(0, 1, Inf) * 1e6),
color = region_iso3c
),
stat = "treemap",
aspect.ratio = aspect.ratio,
lineheight = 0.9,
show.legend = FALSE
) +
scale_size_manual(values = style$gg_text_size * c(0.8, 1.0)) +
scale_fill_manual(values = colors, labels = labeller) +
scale_color_manual(values = contrasting_colors(
colors,
textcolors = c(style$colors$text, style$colors$text.inverse),
biases = c(0, 2.5)
)) +
scale_x_continuous(expand = c(0, 0)) +
scale_y_reverse(expand = c(0, 0)) +
style$theme() +
theme(axis.text = element_blank(), panel.grid = element_blank())
},
aspect_ratio = 0.9,
title = "Just ten countries account for two-thirds of global forest cover.",
subtitle = wbg_name(indicator, by = "by region with top 10 countries", denom = NULL, year = year),
source = "Source: FAO. WDI (AG.LND.FRST.K2)."
)
}
fig_sdg15_forest_area_change <- function(years = c(1990,2015), cum_cover = 2/3) {
indicators <- c("AG.LND.FRST.ZS", "AG.LND.FRST.K2")
df <- wbgdata(
c(wbgref$countries$iso3c, "WLD"),
indicators,
years = years,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg15_forest_area_change.csv"
)
top_N_iso3c <- df %>%
filter(date == max(years), iso3c != "WLD") %>%
arrange(-AG.LND.FRST.K2) %>%
mutate(prop_cumul = cumsum(AG.LND.FRST.K2) / sum(AG.LND.FRST.K2)) %>%
filter(lag(prop_cumul, default = 0) < cum_cover) %>%
pull(iso3c)
df <- df %>% filter(iso3c %in% c(top_N_iso3c, "WLD"))
df <- df %>%
left_join(wbgref$countries$regions) %>%
mutate(region_iso3c = ifelse(iso3c == "WLD", "WLD", region_iso3c))
figure(
data = df,
plot = function(df, style = style_atlas()) {
p <- ggplot(df, aes(date, AG.LND.FRST.ZS, group = iso3c, color = region_iso3c, linetype = region_iso3c)) +
geom_line(size = style$linesize) +
scale_color_manual(values = c(style$colors$regions, style$colors$world)) +
scale_linetype_manual(values = c(style$linetypes$regions, style$linetypes$world)) +
scale_x_continuous(breaks = years, expand = c(0, 0)) +
scale_y_continuous(sec.axis = dup_axis(
breaks = df %>% filter(date == max(date)) %>% pull(AG.LND.FRST.ZS) %>% repel(3),
labels = wbgref$all_geo$labels[df %>% filter(date == max(date)) %>% pull(iso3c)]
)) +
style$theme()
# Switch off clipping for labels
g <- ggplotGrob(p)
g$layout$clip[g$layout$name == "panel"] <- "off"
g$theme <- p$theme
g
},
aspect_ratio = 0.9,
title = "Of these, only China's cover has been growing substantially.",
subtitle = wbg_name(indicators[1], year = paste0(min(years)," & ",max(years))),
source = "Source: FAO. WDI (AG.LND.FRST.ZS)."
)
}
fig_sdg15_protected_map <- function(year = 2016) {
indicators <- c("ER.LND.PTLD.ZS","AG.LND.TOTL.K2")
df <- wbgdata(
wbgref$countries$iso3c,
indicators,
years = year,
indicator.wide = TRUE,
removeNA = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg15_protected_map.csv"
)
df <- df %>% right_join(wbgref$countries$regions)
# Calculate largest land area protected
#df <- df %>% mutate(total = ER.LND.PTLD.ZS / 100 * AG.LND.TOTL.K2)
#print(df %>% arrange(-total) %>% head(5))
# Calculate total land area protected
#print(sum(df$total, na.rm = TRUE))
df$bins <- supercut(df$ER.LND.PTLD.ZS, c(
"0-5" = "[0, 5)",
"5-15" = "[5, 15)",
"15 or over" = "[15, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bins")
g$theme <- style$theme()
g
},
title = "Globally, around 14 percent of land is protected as national park, wildlife preserve, or a similar designations.",
subtitle = wbg_name(indicators[1], year = year),
source = "Source: UNEP, World Conservation Monitoring Centre, WRI. WDI (ER.LND.PTLD.ZS).",
aspect_ratio = 1.3
)
}
# Ideally we should get this from the API rather than parsing PDFs!
read_redlist_pdf <- function(filename) {
raw <- pdf_text(filename)
skips <- c(7, 0, 0, 0, 0, 0)
country_col <- c()
dflist <- mapply(function(page, skip) {
lines <- str_split(page, "\n")[[1]]
if (skip > 0) lines <- lines[-(1:skip)]
lines <- lines[nchar(lines) > 0]
data_start <- min(unlist(lapply(str_locate_all(lines, "[0-9]"), function(l) {if (nrow(l) > 0) l[1,1] else Inf})))
country_col <- str_trim(str_sub(lines, 1, data_start-1))
data_cols <- str_sub(lines, data_start)
data_string <- paste0(data_cols, collapse="\n")
df <- read_table(data_string, col_types = c("nnnnnnnnnnnn"), col_names =
c("EX","EW","Subtotal_EX_EW","CR","EN","VU","Subtotal_CR_EN_VU","NT","LR/cd","DD","LC","Total")
)
df$country <- country_col
df <- df %>% filter(complete.cases(.))
df
}, raw, skips, SIMPLIFY = FALSE, USE.NAMES = FALSE)
df <- do.call(rbind, dflist)
# Basic check for silent parse errors
stopifnot(df$Subtotal_EX_EW == df$EX + df$EW)
stopifnot(df$Subtotal_CR_EN_VU == df$CR + df$EN + df$VU)
stopifnot(df$Subtotal_EX_EW + df$Subtotal_CR_EN_VU + df$NT + df$`LR/cd` + df$DD + df$LC == df$Total)
df
}
fig_sdg15_threatened_plants <- function() {
df <- read_redlist_pdf("inputs/sdg15/2017_3_RL_Stats_Table_6b.pdf")
df <- df %>%
mutate(
iso3c = countrycode(
country, "country.name", "iso3c",
custom_match = c("Disputed Territory" = NA)
),
pc_threatened = ifelse (Total > 0, Subtotal_CR_EN_VU / (Total - Subtotal_EX_EW - DD) * 100.0, 0) # No plants in Antarctica
)
df <- df %>% right_join(wbgref$countries$regions)
df$bin <- supercut(df$pc_threatened, c(
"0–2" = "[0, 2)",
"2–8" = "[2, 8)",
"8–18" = "[8, 18)",
"18 and over" = "[18, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bin")
g$theme <- style$theme()
g
},
title = paste0("Over half of assessed plant species and one-quarter of assessed animal species are threatened."),
subtitle = wbg_name(indicator = "Threatened plant species", denom = "% of all extant assessed plant species", year = "2017")
)
}
fig_sdg15_threatened_animals <- function() {
df <- read_redlist_pdf("inputs/sdg15/2017_3_RL_Stats_Table_6a.pdf")
df <- df %>%
mutate(
iso3c = countrycode(
country, "country.name", "iso3c",
custom_match = c("Disputed Territory" = NA)
),
pc_threatened = Subtotal_CR_EN_VU / (Total - Subtotal_EX_EW - DD) * 100.0
)
df <- df %>% right_join(wbgref$countries$regions)
df$bin <- supercut(df$pc_threatened, c(
"0–5" = "[0, 5)",
"5–7" = "[5, 7)",
"7–9" = "[7, 9)",
"9 and over" = "[9, Inf)"
))
figure(
data = df,
plot = function(df, style = style_atlas_open(), quality = "low") {
g <- wbg_choropleth(df, wbgmaps[[quality]], style, variable = "bin")
g$theme <- style$theme()
g
},
subtitle = wbg_name(indicator = "Threatened animal species", denom = "% of all extant assessed animal species", year = "2017"),
note = "Note: Assumes data-deficient species are threatened in equal proportion to data-sufficent species. The proportion of threatened species can be larger for the world than for any country as threatened species, on average, exist in a smaller number of countries than non-threatened species. a. Royal Botanic Gardens Kew 2016, https://stateoftheworldsplants.com. b. Mora, C. and others 2011. https://doi.org/10.1371/journal.pbio.1001127",
source = "Source: IUCN Red List of Threatened Species. http://http://www.iucnredlist.org"
)
}
fig_sdg15_IWT_commit_map <- function() {
df <- read_csv("inputs/sdg15/iwt_by_country_2010_2016.csv")
df <- df %>%
mutate(
iso3c = countrycode(
country, "country.name", "iso3c",
custom_match = c("Global" = "ZZZ", "Regional/Multi-country" = "ZZZ")
),
commitment = commitment * 1000 # in thousands in file
) %>%
select(-country) %>%
group_by(iso3c) %>%
summarise(commitment = sum(commitment))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
# Edit the country list for presentation purposes
df <- df %>%
full_join(wbgref$countries$regions) %>%
filter(is.na(region_iso3c) | region_iso3c %in% c("SSF", "MEA", "SAS", "EAS", "ECS")) %>%
filter(!(iso3c %in% c("GRL", "ISL")))
breaks <- c(5, 25, 100) * 1e6
maps <- wbgmaps[[quality]]
# Float other in north Pacific
maps$country_centroids <- rbind(
maps$country_centroids,
data.frame(id = "ZZZ", long = 14000000, lat = 7500000)
)
p <- wbg_bubble_map(df, maps, style, "commitment", breaks, max_size = 1.5, labels = millions(), all_countries = FALSE)
p +
scale_x_continuous(expand = c(0, 0), limits = c(-4500000, standard_crop_wintri()$right)) +
scale_y_continuous(expand = c(0, 0), limits = c(standard_crop_wintri()$ylim))
},
title = "For some species, poaching is an existential threat. Commitments to tackling illegal wildlife trade in Africa and Asia totaled $1.3 billion between 2010 and 2016.",
subtitle = wbg_name(indicator = "International donor commitments for combatting illegal wildlife trade", denom = "US$ millions", year = str_range(c(2010,2016), shorten = c(2,2))),
source = "Source: World Bank 2016. http://hdl.handle.net/10986/25340"
)
}
fig_sdg15_IWT_commit_country_category <- function() {
df <- read_csv("inputs/sdg15/iwt_by_country_and_category_2010_2016.csv")
df <- df %>%
rename("Promoting sustainable use" = "Promoting sustainable use and alternative livelihoods") %>%
gather(category, value, -country)
df <- df %>% mutate(
iso3c = countrycode(country, "country.name", "iso3c"),
value = value * 1000 # in thousands
) %>%
select(-country)
figure(
data = df,
plot = function(df, style = style_atlas()) {
ggplot(df, aes(
x = fct_reorder(iso3c, value, sum),
y = value,
fill = fct_reorder(category, value, sum),
)) +
geom_col() +
scale_fill_manual(
values = rev(style$colors$categorical),
guide = guide_legend(reverse = TRUE, byrow = TRUE)) +
scale_x_discrete(labels = wbgref$countries$labels) +
scale_y_continuous(expand = c(0, 0), limits = c(0, 115e6), labels = millions()) +
coord_flip() +
style$theme() +
style$theme_barchart() +
theme(legend.position = c(0.95, 0), legend.justification = c(1, 0))
#style$theme_legend("top")
},
title = "The largest category of funding for most countries is for the management of protected areas, to prevent poaching.",
subtitle = wbg_name(indicator = "International donor commitments for combatting illegal wildlife trade", by = "top 19 recipient countries in Africa and Asia", denom = "US$ millions", year = str_range(2010:2016, shorten = c(2,2))),
source = paste("Source: World Bank 2016. http://hdl.handle.net/10986/25340")
)
}
# make_all(path = "docs/sdg15/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg15", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg15_forest_area_share(), styler, file.path(path, "fig_sdg15_forest_area_share.png"), width = 3.15, height = 3)
saver(fig_sdg15_forest_area_change(), styler, file.path(path, "fig_sdg15_forest_area_change.png"), width = 2.15, height = 3)
# page 2
saver(fig_sdg15_protected_map(), styler, file.path(path, "fig_sdg15_protected_map.png"), width = 5.5, height = 4.25)
# page 3
saver(fig_sdg15_threatened_plants(), styler, file.path(path, "fig_sdg15_threatened_plants.png"), width = 5.5, height = 4.35)
saver(fig_sdg15_threatened_animals(), styler, file.path(path, "fig_sdg15_threatened_animals.png"), width = 5.5, height = 4.35)
# page 4
saver(fig_sdg15_IWT_commit_map(), styler, file.path(path, "fig_sdg15_IWT_commit_map.png"), width = 5.5, height = 4.75)
saver(fig_sdg15_IWT_commit_country_category(), styler, file.path(path, "fig_sdg15_IWT_commit_country_category.png"), width = 5.5, height=3.75)
}