forked from worldbank/sdgatlas2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdg8.R
577 lines (526 loc) · 22.9 KB
/
sdg8.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
library(ggplot2)
library(png)
library(dplyr)
library(forcats)
library(readxl)
library(curl)
library(tidyr)
library(wbgdata)
library(wbgcharts)
library(wbggeo)
library(wbgmaps)
source("styles.R")
fig_sdg8_gdp_pc_ldcs <- function(years = 2007:2016) {
# Get the codes of LDC countries
groups <- read_excel("inputs/reference_data/CLASS.xls", sheet = "Groups")
ldc <- groups %>%
subset(GroupName == "Least developed countries: UN classification") %>%
pull(CountryCode)
# Get GDP ####################
indicator <- "NY.GDP.MKTP.KD"
df <- wbgdata(
ldc,
indicator,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_gdp_pc_ldcs.csv"
)
# This ugly code captures the minimum and maximum values and years wide-style
df <- df %>%
filter(complete.cases(.)) %>%
group_by(iso3c) %>%
summarize(min_date = min(date), max_date = max(date)) %>%
merge(df, by.x = c("iso3c", "min_date"), by.y = c("iso3c", "date"), all.x = TRUE) %>%
merge(df, by.x = c("iso3c", "max_date"), by.y = c("iso3c", "date"), all.x = TRUE) %>%
select(subset = -c(indicatorID.y)) %>%
rename(indicatorID = indicatorID.x, min_date_value = value.x, max_date_value = value.y)
# Calculate annualised growth rate
df <- df %>%
mutate(growth_ratio = (max_date_value / min_date_value)) %>%
mutate(rate = growth_ratio ^ (1 / (max_date - min_date))) %>%
mutate(value = (rate - 1) * 100)
# Get GDP per capita ########
indicator.percap <- "NY.GDP.PCAP.KD"
df_pc <- wbgdata(
ldc,
indicator.percap,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_gdp_pc_ldcs-percap.csv"
)
# This ugly code captures the minimum and maximum values and years wide-style
df_pc <- df_pc %>%
filter(complete.cases(.)) %>%
group_by(iso3c) %>%
summarize(min_date = min(date), max_date = max(date)) %>%
merge(df_pc, by.x = c("iso3c", "min_date"), by.y = c("iso3c", "date"), all.x = TRUE) %>%
merge(df_pc, by.x = c("iso3c", "max_date"), by.y = c("iso3c", "date"), all.x = TRUE) %>%
select(subset = -c(indicatorID.y)) %>%
rename(indicatorID = indicatorID.x, min_date_value = value.x, max_date_value = value.y)
# Calculate annualised growth rate
df_pc <- df_pc %>%
mutate(growth_ratio = (max_date_value / min_date_value)) %>%
mutate(rate = growth_ratio ^ (1 / (max_date - min_date))) %>%
mutate(value = (rate - 1) * 100)
# Select only what we need and combine into one data frame
df <- df %>% select(iso3c, indicatorID, value)
df_pc <- df_pc %>% select(iso3c, indicatorID, value)
df <- rbind(df, df_pc)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% filter(!iso3c %in% c("SDN","ERI","SSD"))
ggplot(df, aes(fct_reorder(iso3c, value), value)) +
geom_col(aes(fill = indicatorID), data = .%>% filter(indicatorID == "NY.GDP.MKTP.KD")) +
geom_hline(yintercept = 7,linetype=style$linetypes$reference, size = style$linesize_reference, color = "grey80") +
geom_point(
aes(iso3c, value, color = indicatorID),
data= df %>% filter(indicatorID == "NY.GDP.PCAP.KD"),
size=style$point_size, shape=style$shapes$point, stroke=style$point_stroke
) +
scale_y_continuous(expand = c(0,0), limits=c(-10,14), breaks=c(-10,-5,0,5,10))+
scale_fill_manual(values = c("NY.GDP.MKTP.KD" = style$colors$spot.secondary.light, "NY.GDP.PCAP.KD" = style$colors$spot.primary), labels = c("NY.GDP.MKTP.KD" = "GDP growth", "NY.GDP.PCAP.KD" = "GDP per capita growth")) +
scale_color_manual(values = c("NY.GDP.MKTP.KD" = style$colors$spot.secondary.light, "NY.GDP.PCAP.KD" = style$colors$spot.primary), labels = c("NY.GDP.MKTP.KD" = "GDP growth", "NY.GDP.PCAP.KD" = "GDP per capita growth")) +
geom_text(
data=.%>% group_by(iso3c) %>% summarise(value = max(value, 0)),
mapping = aes(label=unlist(wbgref$countries$labels)[iso3c]),
size = style$gg_text_size,
family = style$family,
color = style$colors$text,
hjust = 0,
nudge_y=0.3
) +
coord_flip() +
style$theme() +
style$theme_barchart()+
theme(
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
legend.spacing.y = unit(0, "lines"),
legend.margin=margin(c(0,0,0,0)),
legend.position = c(0.95, 0.05),
legend.justification = c(1,0)
)
},
aspect_ratio = 0.8,
title = "Many Least Developed Countries have seen economic growth in the last decade, but few have achieved the SDG target of 7 percent a year.",
subtitle = wbg_name(indicator="Average annual GDP and GDP per capita growth", mrv=years, denom="%"),
note="Note: Data are not available for Djibouti, Eritrea, Niger, Somalia, South Sudan and Sudan.",
source = "Source: World Bank national accounts data and OECD National Accounts data files. WDI (NY.GDP.MKTP.KD; NY.GDP.PCAP.KD)."
)
}
fig_sdg8_sector_map <- function(year = 2016) {
indicators <- c(
Agriculture = "SL.AGR.EMPL.ZS",
Industry = "SL.IND.EMPL.ZS",
Services = "SL.SRV.EMPL.ZS"
)
df <- wbgdata(
wbgref$countries$iso3c,
indicators,
years = year,
rename.indicators = TRUE,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_sector_map.csv"
)
df$bins <- supercut(df$value, c(
"0-25" = "[0, 25)",
"25-50" = "[25, 50)",
"50-75" = "[50, 75)",
"75-100" = "[75, 100]"
))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
maps <- wbgmaps::wbgmaps[[quality]]
p <- ggplot() +
geom_map(data = df, aes(map_id = iso3c, fill = bins), map = maps$countries) +
geom_polygon(data = maps$disputed, aes(long, lat, group = group, map_id = id), fill = "grey80") +
geom_polygon(data = maps$lakes, aes(long, lat, group = group), fill = "white") +
# geom_path(data = maps$boundaries,
# aes(long, lat, group = group),
# color = "white",
# size = 0.1,
# lineend = maps$boundaries$lineend) +
# linetype = maps$boundaries$linetype) +
scale_x_continuous(expand = c(0, 0), limits = standard_crop_wintri()$xlim) +
scale_y_continuous(expand = c(0, 0), limits = standard_crop_wintri()$ylim) +
scale_fill_manual(palette = style$colors$continuous,
na.value = "grey80",
labels = rename_na("No data"),
drop = FALSE) +
coord_equal() +
facet_wrap( ~ indicatorID) +
style$theme()+
style$theme_map(1) +
theme(strip.text = element_text(hjust = 0.5))
pg <- wbg_color_disputed(p)
pg$theme <- style$theme()
pg
},
aspect_ratio = 1.2,
title = "Agriculture dominates employment in South Asia and Sub-Saharan Africa, while most people in Europe & Central Asia, Latin America & Caribbean and North America work in the service sector.",
subtitle = "Employment by sector, 2016 (% of total employment)",
source = paste0("Source: ILO. World Development Indicators (SL.AGR.EMPL.ZS; SL.IND.EMPL.ZS; SL.SRV.EMPL.ZS).")
)
}
fig_sdg8_emp_sector_panel <- function(years = 1990:2016) {
indicators <- c("SL.AGR.EMPL.ZS", "SL.IND.EMPL.ZS", "SL.SRV.EMPL.ZS")
df <- wbgdata(
wbgref$incomes$iso3c,
indicators,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_emp_sector_panel.csv"
)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(iso3c = factor(iso3c, rev(wbgref$incomes$iso3c)))
iso3c_labeller <- as_labeller(function(l) wbgref$incomes$labels[l])
ggplot(df, aes(date, value, group = indicatorID, color = indicatorID)) +
geom_line(size=style$linesize) +
scale_y_continuous(expand=c(0,0), limits = c(0, 80)) +
scale_x_continuous(expand=c(0,0), limits=c(1990,2020), breaks = c(1990,2016)) +
scale_color_manual(
values = c(
SL.AGR.EMPL.ZS = style$colors$spot.secondary,
SL.IND.EMPL.ZS = style$colors$spot.secondary.light,
SL.SRV.EMPL.ZS = style$colors$spot.primary
),
labels = c(
SL.AGR.EMPL.ZS = "Agriculture",
SL.IND.EMPL.ZS = "Industry",
SL.SRV.EMPL.ZS = "Services"
)
) +
facet_wrap(~iso3c, nrow=1, labeller = iso3c_labeller) +
style$theme() +
style$theme_legend("top") +
theme(panel.spacing.x = unit(0.03, "npc"))
},
aspect_ratio = 1.2,
title = "In the early 2000s the service sector overtook agriculture to become the world's largest employer. Globally, services account for 50 percent of employment, agriculture 30 percent and industry 20 percent.",
subtitle = paste0("Employment by sector (% of total employment)"),
source = paste0("Source: ILO. World Development Indicators (SL.AGR.EMPL.ZS; SL.IND.EMPL.ZS; SL.SRV.EMPL.ZS).")
)
}
fig_sdg8_emp_gap_number_panel <- function(years = 1990:2016) {
indicators <- c(
"SP.POP.TOTL",
"SP.POP.1564.TO.ZS",
"SP.POP.65UP.TO.ZS",
"SL.EMP.TOTL.SP.ZS"
)
df <- wbgdata(
wbgref$incomes$iso3c,
indicators,
years = years,
indicator.wide = TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_emp_gap_number_panel.csv"
)
df <- df %>%
mutate(
count_pop = (SP.POP.1564.TO.ZS/100 * SP.POP.TOTL) + (SP.POP.65UP.TO.ZS/100 * SP.POP.TOTL),
count_employ = SL.EMP.TOTL.SP.ZS/100 * count_pop
) %>%
gather(indicatorID, value, c(count_pop, count_employ)) %>%
select(iso3c, indicatorID, date, value)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>% mutate(
iso3c = factor(iso3c, rev(wbgref$incomes$iso3c))
)
iso3c_labeller <- as_labeller(function(l) wbgref$incomes$labels[l])
ggplot(df, aes(date, value, group = indicatorID, color = indicatorID)) +
geom_line(size=style$linesize) +
scale_y_continuous(expand=c(0,0), limits=c(0,2.2e09),labels = billions()) +
scale_x_continuous(expand=c(0,0), limits=c(1990,2020), breaks = c(1990,2016)) +
scale_color_manual(
values = c(
count_pop = style$colors$spot.primary.light,
count_employ = style$colors$spot.primary
),
labels = c(
count_pop = "Population ages 15 and older",
count_employ = "Employed ages 15 and older"
)
) +
facet_wrap(~iso3c, nrow=1, labeller = iso3c_labeller) +
style$theme() +
style$theme_legend("top") +
theme(panel.spacing.x = unit(0.03, "npc"))
},
aspect_ratio = 1.2,
title = "Not everyone of working age can find employment, especially young people. And as populations age, the share of the population that is working falls.",
subtitle = paste0("People (billions)"),
source = paste0("Source: ILO. WDI (SP.POP.TOTL; SP.POP.1564.TO.ZS; SP.POP.65UP.TO.ZS; SL.EMP.TOTL.SP.ZS).")
)
}
fig_sdg8_labor_stat_GDP_PC <- function(year = 2016) {
indicators <- c(
"SL.EMP.TOTL.SP.FE.ZS", # Employment to population ratio, 15+, female
"SL.EMP.TOTL.SP.MA.ZS", # Employment to population ratio, 15+, male
"SL.UEM.TOTL.FE.ZS", # Unemployment as % labor force, female
"SL.UEM.TOTL.MA.ZS", # Unemployment as % labor force, male
"SL.TLF.CACT.FE.ZS", # Labor force participation rate, 15+, female
"SL.TLF.CACT.MA.ZS" # Labor force participation rate, 15+, male
)
# Get data for both genders for all income groups
df <- wbgdata(
wbgref$incomes$iso3c,
indicators,
years = year,
indicator.wide=TRUE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_labor_stat_GDP_PC.csv"
)
# Female gender analysis - we want to calculate everything over a denom of 15+, gender
df_female <- df %>%
na.omit() %>%
mutate(
employed = SL.EMP.TOTL.SP.FE.ZS, # Employment is already correctly denominated
unemployed = (SL.UEM.TOTL.FE.ZS * SL.TLF.CACT.FE.ZS / 100), # Unemployment we need to scale by labor force participation
out_of_labor_force = 100 - employed - unemployed, # Out of labor force is the residual
gender = "Female"
) %>%
select(iso3c, employed, unemployed, out_of_labor_force, gender) %>%
gather(employment_category, value, c(employed, unemployed, out_of_labor_force))
# Male gender analysis
df_male <- df %>%
na.omit() %>%
mutate(
employed = SL.EMP.TOTL.SP.MA.ZS,
unemployed = (SL.UEM.TOTL.MA.ZS * SL.TLF.CACT.MA.ZS / 100),
out_of_labor_force = 100 - employed - unemployed,
gender = "Male"
) %>%
select(iso3c, employed, unemployed, out_of_labor_force, gender) %>%
gather(employment_category, value, c(employed, unemployed, out_of_labor_force))
# Recombine genders
df <- rbind(df_female, df_male) %>% mutate(gender=fct_rev(gender))
figure(
data = df,
plot = function(df, style = style_atlas()) {
ggplot(df, aes(gender, value, fill = factor(employment_category, levels = c("employed", "unemployed", "out_of_labor_force")))) +
geom_col(position = position_stack(reverse = TRUE)) +
scale_fill_manual(
values = c(
employed = style$colors$spot.primary,
unemployed = style$colors$spot.primary.light,
out_of_labor_force = style$colors$spot.secondary
),
labels = c(
c(
employed = "Employed",
unemployed = "Unemployed",
out_of_labor_force = "Out of labor force"
)
)
) +
facet_wrap(~ factor(iso3c, levels = c("LIC", "LMC", "UMC", "HIC")),
ncol = 7,
labeller = as_labeller(wbgref$incomes$labels)
) +
style$theme() +
style$theme_legend("top") +
theme(strip.text.x = element_text(hjust=0.5))
},
aspect_ratio = 1,
title = "Globally, women are less likely to be employed than men, but the gap is most pronounced in lower-middle-income countries.",
subtitle = wbg_name(indicator = "Share of people by employment status",year = year, denom = "% of population ages 15 and older"),
source = paste("Source: ILO. World Development Indicators (SL.UEM.TOTL.FE.ZS; SL.UEM.TOTL.MA.ZS; SL.TLF.CACT.FE.ZS; SL.TLF.CACT.MA.ZS; SL.EMP.TOTL.SP.FE.ZS; SL.EMP.TOTL.SP.MA.ZS; SP.POP.1564.FE.ZS; SP.POP.65UP.FE.ZS; SP.POP.1564.MA.ZS; SP.POP.65UP.MA.ZS).")
)
}
fig_sdg8_wage_gender <- function(years = 2016) {
indicators <- c(
# Employers
"SL.EMP.MPYR.FE.ZS",
"SL.EMP.MPYR.MA.ZS",
# Wage & salaried
"SL.EMP.WORK.FE.ZS",
"SL.EMP.WORK.MA.ZS",
# Own account
"SL.EMP.OWAC.FE.ZS",
"SL.EMP.OWAC.MA.ZS",
# Family
"SL.FAM.WORK.FE.ZS",
"SL.FAM.WORK.MA.ZS"
)
df <- wbgdata(
wbgref$regions$iso3c,
indicators,
years = years,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_wage_gender.csv"
)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(
ind_gen = substr(indicatorID, 1, 11),
ind_sex = substr(indicatorID, 13, 14)
) %>%
mutate(
ind_gen = fct_reorder(ind_gen, -value),
ind_sex = fct_reorder(ind_sex, -value),
iso3c = fct_reorder2(iso3c, ind_gen == "SL.EMP.WORK", -value)
)
p <- ggplot(df, aes(ind_sex, value, fill = ind_gen)) +
geom_col(position = position_stack(reverse = TRUE)) +
scale_x_discrete(labels = c(FE = "Female", MA = "Male")) +
scale_y_continuous(expand=c(0,0), limits=c(0,103)) +
scale_fill_manual(
values = style$colors$categorical,
labels = c(
c(SL.EMP.WORK = "Wage and salaried workers",
SL.EMP.OWAC = "Own-account workers",
SL.FAM.WORK = "Contributing family workers",
SL.EMP.MPYR = "Employers")
)
) +
facet_wrap(~ iso3c,
ncol = 1,
strip.position = "left",
labeller = as_labeller(wbgref$regions$labels)
) +
coord_flip() +
style$theme() +
style$theme_barchart() +
style$theme_legend("top") +
theme(strip.placement = "outside",
strip.text.y = element_text(angle = 180))
g <- ggplotGrob(p)
g$layout$l[g$layout$name == "guide-box"] <- g$layout$l[g$layout$name == "guide-box"] - 3
g$theme <- p$theme
g
},
aspect_ratio = 1,
title = paste0("Many people in South Asia and Sub-Saharan Africa work for themselves or their family. They are more likely to lack social safety nets, and they face a greater risk from economic shocks than salaried workers do."),
subtitle = wbg_name(indicator = "Employment type", year=years, denom ="% of total employment"),
source = paste("Source: ILO. World Development Indicators (SL.EMP.MPYR.FE.ZS; SL.EMP.MPYR.MA.ZS; SL.EMP.WORK.FE.ZS; SL.EMP.WORK.MA.ZS; SL.EMP.OWAC.FE.ZS; SL.EMP.OWAC.MA.ZS; SL.FAM.WORK.FE.ZS; SL.FAM.WORK.MA.ZS).")
)
}
fig_sdg8_account_map <- function(year = 2017) {
indicator <- "FX.OWN.TOTL.ZS"
df <- wbgdata(
wbgref$countries$iso3c,
indicator,
years = year,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_account_map.csv"
)
df$bins <- supercut(df$value, c(
"0–20" = "[0,20)",
"20–40" = "[20,40)",
"40–65" = "[40,65)",
"65–90" = "[65,90)",
"90–100" = "[90,100]"
))
figure(
data = df,
plot = function(df, style = style_atlas(), quality = "low") {
wbg_choropleth(df, wbgmaps[[quality]], style = style, variable = "bins", legend.nrow = 1)
},
aspect_ratio = 1.3,
title = "Access to financial services benefits individuals and societies. Globally, 69 percent of adults have an account with a financial institution or mobile money provider.",
subtitle = wbg_name(indicator = "Account ownership", year = year, denom = "% of population ages 15 and older"),
source = paste("Source: Global Findex Database. World Development Indicators (FX.OWN.TOTL.ZS).")
)
}
fig_sdg8_findex_panel_dimensions <- function(year = 2017) {
indicators <- tribble(
~indicatorID, ~group, ~category,
"FX.OWN.TOTL.OL.ZS", "Age", "Ages 25 and above",
"FX.OWN.TOTL.YG.ZS", "Age", "Ages 15–24",
"FX.OWN.TOTL.SO.ZS", "Education", "Secondary or more",
"FX.OWN.TOTL.PL.ZS", "Education", "Primary or less",
"FX.OWN.TOTL.MA.ZS", "Gender", "Male",
"FX.OWN.TOTL.FE.ZS", "Gender", "Female",
"FX.OWN.TOTL.60.ZS", "Income", "Richest 60 percent",
"FX.OWN.TOTL.40.ZS", "Income", "Poorest 40 percent"
)
df <- wbgdata(
c("WLD", wbgref$regions$iso3c),
indicators$indicatorID,
years = year,
indicator.wide = FALSE,
# Comment the next two lines to use live API data
offline = "only",
offline.file = "inputs/cached_api_data/fig_sdg8_findex_panel_dimensions.csv"
)
df <- df %>% left_join(indicators)
figure(
data = df,
plot = function(df, style = style_atlas()) {
df <- df %>%
mutate(iso3c = fct_reorder2(iso3c, category=="Ages 15–24", value)) %>%
mutate(category = factor(category, levels = indicators$category))
ggplot(df, aes(value, iso3c ,color=category)) +
geom_other_dotplot(
aes(value,iso3c, group=paste0(group,category)),
size = style$point_size,
stroke=style$point_stroke,
shape = style$shapes$point
) +
scale_color_manual(values = c(
"Male" = style$colors$spot.primary,
"Female" = style$colors$spot.primary.light,
"Richest 60 percent" = style$colors$spot.primary,
"Poorest 40 percent" = style$colors$spot.primary.light,
"Ages 25 and above" = style$colors$spot.primary,
"Ages 15–24" = style$colors$spot.primary.light,
"Secondary or more" = style$colors$spot.primary,
"Primary or less" = style$colors$spot.primary.light
)) +
scale_x_continuous(limits = c(0, 100)) +
scale_y_discrete(labels = wbgref$all_geo$labels) +
facet_wrap(~group,nrow=1)+
style$theme() +
style$theme_legend("top") +
style$theme_barchart() +
theme(
strip.text.x=element_text(hjust=0.5),
panel.spacing.x = unit(0.05, "npc")
)
},
aspect_ratio = 1,
note = "Note: Data refer to the richest 60 percent and poorest 40 percent within individual economies rather than the region as a whole.",
title = "Financial account ownership is lower among younger adults, those with less education, women, and poorer adults.",
subtitle = wbg_name(indicator = "Account ownership", year = 2017, denom = "% of population ages 15 and older"),
source = "Source: Global Findex Database. World Development Indicators (FX.OWN.TOTL.MA.ZS; FX.OWN.TOTL.FE.ZS; FX.OWN.TOTL.YG.ZS; FX.OWN.TOTL.OL.ZS; FX.OWN.TOTL.PL.ZS; FX.OWN.TOTL.SO.ZS; FX.OWN.TOTL.40.ZS; FX.OWN.TOTL.60.ZS)."
)
}
#make_all(path = "docs/sdg8/pdf", styler = style_atlas_cmyk, saver = figure_save_final_pdf)
make_all <- function(path = "docs/sdg8", styler = style_atlas, saver = figure_save_draft_png) {
# page 1
saver(fig_sdg8_gdp_pc_ldcs(), styler, file.path(path, "fig_sdg8_gdp_pc_ldcs.png"), width = 5.5, height=7.2)
# page 2
saver(fig_sdg8_sector_map(), styler, file.path(path, "fig_sdg8_sector_map.png"), width = 5.5, height = 2.65)
saver(fig_sdg8_emp_sector_panel(), styler, file.path(path, "fig_sdg8_emp_sector_panel.png"), width = 5.5, height=2.9)
saver(fig_sdg8_emp_gap_number_panel(), styler, file.path(path, "fig_sdg8_emp_gap_number_panel.png"), width = 5.5, height=2.9)
# page 3
saver(fig_sdg8_labor_stat_GDP_PC(), styler, file.path(path, "fig_sdg8_labor_stat_GDP_PC.png"), width = 5.5, height = 3)
saver(fig_sdg8_wage_gender(), styler, file.path(path, "fig_sdg8_wage_gender.png"), width=5.5, height=5.5)
# page 4
saver(fig_sdg8_account_map(), styler, file.path(path, "fig_sdg8_account_map2.png"), width = 5.5, height=4.5)
saver(fig_sdg8_findex_panel_dimensions(), styler, file.path(path, "fig_sdg8_findex_panel_dimensions2.png"), width = 5.5, height=4, padding=margin(0,5,0,0))
}