-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_model.py
37 lines (28 loc) · 1.12 KB
/
example_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from transformers import PreTrainedModel, PretrainedConfig
import torch
from timm.models.resnet import BasicBlock, Bottleneck, ResNet
import transformers
from timm import create_model
# from deepspeed.ops.adam import DeepSpeedCPUAdam
from transformers import ConvNextConfig, ConvNextForImageClassification
from transformers import ResNetConfig, ResNetForImageClassification
BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck}
class Config(PretrainedConfig):
model_type = "resnet"
def __init__(
self,
block_type="basic",
**kwargs,
):
self.block_type = block_type
super().__init__(**kwargs)
class Model(PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.model = create_model('resnext50d_32x4d', pretrained=False, num_classes=10)
def forward(self, tensor, labels=None):
logits = self.model(tensor)
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits, labels.to(self.device), label_smoothing=0.1)
return {"loss": loss, "logits": logits}
return {"logits": logits}