forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdigital_differential_analyzer_line.py
52 lines (44 loc) · 1.49 KB
/
digital_differential_analyzer_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import matplotlib.pyplot as plt
def digital_differential_analyzer_line(
p1: tuple[int, int], p2: tuple[int, int]
) -> list[tuple[int, int]]:
"""
Draws a line between two points using the DDA algorithm.
Args:
- p1: Coordinates of the starting point.
- p2: Coordinates of the ending point.
Returns:
- List of coordinate points that form the line.
>>> digital_differential_analyzer_line((1, 1), (4, 4))
[(2, 2), (3, 3), (4, 4)]
"""
x1, y1 = p1
x2, y2 = p2
dx = x2 - x1
dy = y2 - y1
steps = max(abs(dx), abs(dy))
x_increment = dx / float(steps)
y_increment = dy / float(steps)
coordinates = []
x: float = x1
y: float = y1
for _ in range(steps):
x += x_increment
y += y_increment
coordinates.append((int(round(x)), int(round(y))))
return coordinates
if __name__ == "__main__":
import doctest
doctest.testmod()
x1 = int(input("Enter the x-coordinate of the starting point: "))
y1 = int(input("Enter the y-coordinate of the starting point: "))
x2 = int(input("Enter the x-coordinate of the ending point: "))
y2 = int(input("Enter the y-coordinate of the ending point: "))
coordinates = digital_differential_analyzer_line((x1, y1), (x2, y2))
x_points, y_points = zip(*coordinates)
plt.plot(x_points, y_points, marker="o")
plt.title("Digital Differential Analyzer Line Drawing Algorithm")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.grid()
plt.show()