forked from Farama-Foundation/Minigrid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_train.py
143 lines (118 loc) · 4.62 KB
/
supervised_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import time
import datetime
import torch
import tensorboardX
import gym
import gym_minigrid
import sys
import utils
from train_mgmt import training_management
from supervised_model import CNN_LSTM
## General parameters
parser = argparse.ArgumentParser()
parser.add_argument("--env", required=True,
help="name of the environment to train on (REQUIRED)")
parser.add_argument("--model", default=None,
help="name of the model (default: {ENV}_{ALGO}_{TIME})")
parser.add_argument("--seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--log_interval", type=int, default=1,
help="number of updates between two logs (default: 1)")
parser.add_argument("--save_interval", type=int, default=10,
help="number of updates between two saves (default: 10, 0 means no saving)")
parser.add_argument("--updates", type=int, default=10000,
help="number of updates of training (default: 10,000)")
parser.add_argument("--visualize", action="store_true", default=False,
help="Show last frame of the last sample for every log interval")
parser.add_argument("--batch_size", type=int, default=256,
help="batch size (default: 256)")
parser.add_argument("--lr", type=float, default=0.001,
help="learning rate (default: 0.001)")
args = parser.parse_args()
# Set run dir
date = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S")
default_model_name = f"{args.env}_seed{args.seed}_{date}"
model_name = args.model or default_model_name
model_dir = utils.get_model_dir(model_name)
# Load loggers and Tensorboard writer
txt_logger = utils.get_txt_logger(model_dir)
csv_file, csv_logger = utils.get_csv_logger(model_dir)
tb_writer = tensorboardX.SummaryWriter(model_dir)
# Log command and all script arguments
txt_logger.info("{}\n".format(" ".join(sys.argv)))
txt_logger.info("{}\n".format(args))
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
txt_logger.info(f"Device: {device}\n")
# Load environments
utils.seed(args.seed)
env = gym.make(args.env)
env.seed(args.seed)
# Load training status
try:
status = utils.get_status(model_dir)
except OSError:
status = {"update": 0}
txt_logger.info("Training status loaded\n")
# Load model
model = CNN_LSTM(obs_shape=env.observation_space.spaces["image"].shape, nb_class=env.width * env.height)
if "model_state" in status:
model.load_state_dict(status["model_state"])
model.to(device)
txt_logger.info("Model loaded\n")
txt_logger.info("{}\n".format(model))
mgmt = training_management(env, model, device, args.lr, args.batch_size)
if "optimizer_state" in status:
mgmt.optimizer.load_state_dict(status["optimizer_state"])
txt_logger.info("Optimizer loaded\n")
# Training
update = status["update"]
start_time = time.time()
losses = []
accuracy = torch.tensor([]).to(device)
over = False
while update < args.updates and not over:
# Train
update_start_time = time.time()
images, label, seq_lens = mgmt.collect_episode()
loss, correct = mgmt.update_parameters(images, label, seq_lens)
# Log
losses.append(loss)
accuracy = torch.cat((accuracy, correct), 0)
update += 1
# Print logs
if update % args.log_interval == 0:
if args.visualize:
# Visualize last frame of last sample
from gym_minigrid.window import Window
window = Window('gym_minigrid - ' + args.env)
images = images.transpose(1,2)
images = images.transpose(2,3)
print(images[-1].shape)
print(label)
window.show_img(images[-1])
input()
window.close()
duration = int(time.time() - start_time)
header = ["Update", "Time", "Loss", "Accuracy"]
acc = torch.mean(accuracy)
data = [update, duration, sum(losses) / len(losses), acc]
losses = []
over = (acc >= 0.9999)
accuracy = torch.tensor([]).to(device)
txt_logger.info(
"U {} | T {} | L {:.3f} | A {:.4f}"
.format(*data))
if status["update"] == 0:
csv_logger.writerow(header)
csv_logger.writerow(data)
csv_file.flush()
for field, value in zip(header, data):
tb_writer.add_scalar(field, value, update)
# Save status
if args.save_interval > 0 and update % args.save_interval == 0:
status = {"update": update,
"model_state": model.state_dict(), "optimizer_state": mgmt.optimizer.state_dict()}
utils.save_status(status, model_dir)
txt_logger.info("Status saved")