forked from shaoshengsong/DeepSORT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
193 lines (153 loc) · 5.79 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/*!
@Description : https://github.com/shaoshengsong/
@Author : shaoshengsong
@Date : 2022-09-23 02:52:22
*/
#include <fstream>
#include <sstream>
#include <opencv2/imgproc.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
#include "YOLOv5Detector.h"
#include "FeatureTensor.h"
#include "BYTETracker.h" //bytetrack
#include "tracker.h"//deepsort
//Deep SORT parameter
const int nn_budget=100;
const float max_cosine_distance=0.2;
void get_detections(DETECTBOX box,float confidence,DETECTIONS& d)
{
DETECTION_ROW tmpRow;
tmpRow.tlwh = box;//DETECTBOX(x, y, w, h);
tmpRow.confidence = confidence;
d.push_back(tmpRow);
}
void test_deepsort(cv::Mat& frame, std::vector<detect_result>& results,tracker& mytracker)
{
std::vector<detect_result> objects;
DETECTIONS detections;
for (detect_result dr : results)
{
//cv::putText(frame, classes[dr.classId], cv::Point(dr.box.tl().x+10, dr.box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .8, cv::Scalar(0, 255, 0));
if(dr.classId == 0) //person
{
objects.push_back(dr);
cv::rectangle(frame, dr.box, cv::Scalar(255, 0, 0), 2);
get_detections(DETECTBOX(dr.box.x, dr.box.y,dr.box.width, dr.box.height),dr.confidence, detections);
}
}
std::cout<<"begin track"<<std::endl;
if(FeatureTensor::getInstance()->getRectsFeature(frame, detections))
{
std::cout << "get feature succeed!"<<std::endl;
mytracker.predict();
mytracker.update(detections);
std::vector<RESULT_DATA> result;
for(Track& track : mytracker.tracks) {
if(!track.is_confirmed() || track.time_since_update > 1) continue;
result.push_back(std::make_pair(track.track_id, track.to_tlwh()));
}
for(unsigned int k = 0; k < detections.size(); k++)
{
DETECTBOX tmpbox = detections[k].tlwh;
cv::Rect rect(tmpbox(0), tmpbox(1), tmpbox(2), tmpbox(3));
cv::rectangle(frame, rect, cv::Scalar(0,0,255), 4);
// cvScalar的储存顺序是B-G-R,CV_RGB的储存顺序是R-G-B
for(unsigned int k = 0; k < result.size(); k++)
{
DETECTBOX tmp = result[k].second;
cv::Rect rect = cv::Rect(tmp(0), tmp(1), tmp(2), tmp(3));
rectangle(frame, rect, cv::Scalar(255, 255, 0), 2);
std::string label = cv::format("%d", result[k].first);
cv::putText(frame, label, cv::Point(rect.x, rect.y), cv::FONT_HERSHEY_SIMPLEX, 0.8, cv::Scalar(255, 255, 0), 2);
}
}
}
std::cout<<"end track"<<std::endl;
}
void test_bytetrack(cv::Mat& frame, std::vector<detect_result>& results,BYTETracker& tracker)
{
std::vector<detect_result> objects;
for (detect_result dr : results)
{
if(dr.classId == 0) //person
{
objects.push_back(dr);
}
}
std::vector<STrack> output_stracks = tracker.update(objects);
for (unsigned long i = 0; i < output_stracks.size(); i++)
{
std::vector<float> tlwh = output_stracks[i].tlwh;
bool vertical = tlwh[2] / tlwh[3] > 1.6;
if (tlwh[2] * tlwh[3] > 20 && !vertical)
{
cv::Scalar s = tracker.get_color(output_stracks[i].track_id);
cv::putText(frame, cv::format("%d", output_stracks[i].track_id), cv::Point(tlwh[0], tlwh[1] - 5),
0, 0.6, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
cv::rectangle(frame, cv::Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
}
}
}
int main(int argc, char *argv[])
{
//deepsort
tracker mytracker(max_cosine_distance, nn_budget);
//bytetrack
int fps=20;
BYTETracker bytetracker(fps, 30);
//-----------------------------------------------------------------------
// 加载类别名称
std::vector<std::string> classes;
std::string file="./coco_80_labels_list.txt";
std::ifstream ifs(file);
if (!ifs.is_open())
CV_Error(cv::Error::StsError, "File " + file + " not found");
std::string line;
while (std::getline(ifs, line))
{
classes.push_back(line);
}
//-----------------------------------------------------------------------
std::cout<<"classes:"<<classes.size();
std::shared_ptr<YOLOv5Detector> detector(new YOLOv5Detector());
detector->init(k_detect_model_path);
std::cout<<"begin read video"<<std::endl;
cv::VideoCapture capture("./1.mp4");
if (!capture.isOpened()) {
printf("could not read this video file...\n");
return -1;
}
std::cout<<"end read video"<<std::endl;
std::vector<detect_result> results;
int num_frames = 0;
cv::VideoWriter video("out.avi",cv::VideoWriter::fourcc('M','J','P','G'),10, cv::Size(1920,1080));
while (true)
{
cv::Mat frame;
if (!capture.read(frame)) // if not success, break loop
{
std::cout<<"\n Cannot read the video file. please check your video.\n";
break;
}
num_frames ++;
//Second/Millisecond/Microsecond 秒s/毫秒ms/微秒us
auto start = std::chrono::system_clock::now();
detector->detect(frame, results);
auto end = std::chrono::system_clock::now();
auto detect_time =std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();//ms
std::cout<<classes.size()<<":"<<results.size()<<":"<<num_frames<<std::endl;
//test_deepsort(frame, results,mytracker);
test_bytetrack(frame, results,bytetracker);
cv::imshow("YOLOv5-6.x", frame);
video.write(frame);
if(cv::waitKey(30) == 27) // Wait for 'esc' key press to exit
{
break;
}
results.clear();
}
capture.release();
video.release();
cv::destroyAllWindows();
}