forked from microsoft/singleshotpose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
410 lines (369 loc) · 18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from __future__ import print_function
import sys
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.backends.cudnn as cudnn
import numpy as np
import os
import random
import math
import shutil
import argparse
from torchvision import datasets, transforms
from torch.autograd import Variable # Useful info about autograd: http://pytorch.org/docs/master/notes/autograd.html
import dataset
from utils import *
from cfg import parse_cfg
from region_loss import RegionLoss
from darknet import Darknet
from MeshPly import MeshPly
import warnings
warnings.filterwarnings("ignore")
# Create new directory
def makedirs(path):
if not os.path.exists( path ):
os.makedirs( path )
# Adjust learning rate during training, learning schedule can be changed in network config file
def adjust_learning_rate(optimizer, batch):
lr = learning_rate
for i in range(len(steps)):
scale = scales[i] if i < len(scales) else 1
if batch >= steps[i]:
lr = lr * scale
if batch == steps[i]:
break
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr/batch_size
return lr
def train(epoch):
global processed_batches
# Initialize timer
t0 = time.time()
# Get the dataloader for training dataset
train_loader = torch.utils.data.DataLoader(dataset.listDataset(trainlist,
shape=(init_width, init_height),
shuffle=True,
transform=transforms.Compose([transforms.ToTensor(),]),
train=True,
seen=model.seen,
batch_size=batch_size,
num_workers=num_workers,
bg_file_names=bg_file_names),
batch_size=batch_size, shuffle=False, **kwargs)
# TRAINING
lr = adjust_learning_rate(optimizer, processed_batches)
logging('epoch %d, processed %d samples, lr %f' % (epoch, epoch * len(train_loader.dataset), lr))
# Start training
model.train()
t1 = time.time()
avg_time = torch.zeros(9)
niter = 0
# Iterate through batches
for batch_idx, (data, target) in enumerate(train_loader):
t2 = time.time()
# adjust learning rate
adjust_learning_rate(optimizer, processed_batches)
processed_batches = processed_batches + 1
# Pass the data to GPU
if use_cuda:
data = data.cuda()
t3 = time.time()
# Wrap tensors in Variable class for automatic differentiation
data, target = Variable(data), Variable(target)
t4 = time.time()
# Zero the gradients before running the backward pass
optimizer.zero_grad()
t5 = time.time()
# Forward pass
output = model(data)
t6 = time.time()
model.seen = model.seen + data.data.size(0)
region_loss.seen = region_loss.seen + data.data.size(0)
# Compute loss, grow an array of losses for saving later on
loss = region_loss(output, target, epoch)
training_iters.append(epoch * math.ceil(len(train_loader.dataset) / float(batch_size) ) + niter)
training_losses.append(convert2cpu(loss.data))
niter += 1
t7 = time.time()
# Backprop: compute gradient of the loss with respect to model parameters
loss.backward()
t8 = time.time()
# Update weights
optimizer.step()
t9 = time.time()
# Print time statistics
if False and batch_idx > 1:
avg_time[0] = avg_time[0] + (t2-t1)
avg_time[1] = avg_time[1] + (t3-t2)
avg_time[2] = avg_time[2] + (t4-t3)
avg_time[3] = avg_time[3] + (t5-t4)
avg_time[4] = avg_time[4] + (t6-t5)
avg_time[5] = avg_time[5] + (t7-t6)
avg_time[6] = avg_time[6] + (t8-t7)
avg_time[7] = avg_time[7] + (t9-t8)
avg_time[8] = avg_time[8] + (t9-t1)
print('-------------------------------')
print(' load data : %f' % (avg_time[0]/(batch_idx)))
print(' cpu to cuda : %f' % (avg_time[1]/(batch_idx)))
print('cuda to variable : %f' % (avg_time[2]/(batch_idx)))
print(' zero_grad : %f' % (avg_time[3]/(batch_idx)))
print(' forward feature : %f' % (avg_time[4]/(batch_idx)))
print(' forward loss : %f' % (avg_time[5]/(batch_idx)))
print(' backward : %f' % (avg_time[6]/(batch_idx)))
print(' step : %f' % (avg_time[7]/(batch_idx)))
print(' total : %f' % (avg_time[8]/(batch_idx)))
t1 = time.time()
t1 = time.time()
return epoch * math.ceil(len(train_loader.dataset) / float(batch_size) ) + niter - 1
def test(epoch, niter):
def truths_length(truths):
for i in range(50):
if truths[i][1] == 0:
return i
# Set the module in evaluation mode (turn off dropout, batch normalization etc.)
model.eval()
# Parameters
num_classes = model.num_classes
anchors = model.anchors
num_anchors = model.num_anchors
testtime = True
testing_error_trans = 0.0
testing_error_angle = 0.0
testing_error_pixel = 0.0
testing_samples = 0.0
errs_2d = []
errs_3d = []
errs_trans = []
errs_angle = []
errs_corner2D = []
logging(" Testing...")
logging(" Number of test samples: %d" % len(test_loader.dataset))
notpredicted = 0
# Iterate through test examples
for batch_idx, (data, target) in enumerate(test_loader):
t1 = time.time()
# Pass the data to GPU
if use_cuda:
data = data.cuda()
target = target.cuda()
# Wrap tensors in Variable class, set volatile=True for inference mode and to use minimal memory during inference
data = Variable(data, volatile=True)
t2 = time.time()
# Formward pass
output = model(data).data
t3 = time.time()
# Using confidence threshold, eliminate low-confidence predictions
all_boxes = get_region_boxes(output, num_classes, num_keypoints)
t4 = time.time()
# Iterate through all batch elements
for box_pr, target in zip([all_boxes], [target[0]]):
# For each image, get all the targets (for multiple object pose estimation, there might be more than 1 target per image)
truths = target.view(-1, num_keypoints*2+3)
# Get how many objects are present in the scene
num_gts = truths_length(truths)
# Iterate through each ground-truth object
for k in range(num_gts):
box_gt = list()
for j in range(1, 2*num_keypoints+1):
box_gt.append(truths[k][j])
box_gt.extend([1.0, 1.0])
box_gt.append(truths[k][0])
# Denormalize the corner predictions
corners2D_gt = np.array(np.reshape(box_gt[:num_keypoints*2], [num_keypoints, 2]), dtype='float32')
corners2D_pr = np.array(np.reshape(box_pr[:num_keypoints*2], [num_keypoints, 2]), dtype='float32')
corners2D_gt[:, 0] = corners2D_gt[:, 0] * im_width
corners2D_gt[:, 1] = corners2D_gt[:, 1] * im_height
corners2D_pr[:, 0] = corners2D_pr[:, 0] * im_width
corners2D_pr[:, 1] = corners2D_pr[:, 1] * im_height
# Compute corner prediction error
corner_norm = np.linalg.norm(corners2D_gt - corners2D_pr, axis=1)
corner_dist = np.mean(corner_norm)
errs_corner2D.append(corner_dist)
# Compute [R|t] by pnp
R_gt, t_gt = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'), corners2D_gt, np.array(internal_calibration, dtype='float32'))
R_pr, t_pr = pnp(np.array(np.transpose(np.concatenate((np.zeros((3, 1)), corners3D[:3, :]), axis=1)), dtype='float32'), corners2D_pr, np.array(internal_calibration, dtype='float32'))
# Compute errors
# Compute translation error
trans_dist = np.sqrt(np.sum(np.square(t_gt - t_pr)))
errs_trans.append(trans_dist)
# Compute angle error
angle_dist = calcAngularDistance(R_gt, R_pr)
errs_angle.append(angle_dist)
# Compute pixel error
Rt_gt = np.concatenate((R_gt, t_gt), axis=1)
Rt_pr = np.concatenate((R_pr, t_pr), axis=1)
proj_2d_gt = compute_projection(vertices, Rt_gt, internal_calibration)
proj_2d_pred = compute_projection(vertices, Rt_pr, internal_calibration)
norm = np.linalg.norm(proj_2d_gt - proj_2d_pred, axis=0)
pixel_dist = np.mean(norm)
errs_2d.append(pixel_dist)
# Compute 3D distances
transform_3d_gt = compute_transformation(vertices, Rt_gt)
transform_3d_pred = compute_transformation(vertices, Rt_pr)
norm3d = np.linalg.norm(transform_3d_gt - transform_3d_pred, axis=0)
vertex_dist = np.mean(norm3d)
errs_3d.append(vertex_dist)
# Sum errors
testing_error_trans += trans_dist
testing_error_angle += angle_dist
testing_error_pixel += pixel_dist
testing_samples += 1
t5 = time.time()
# Compute 2D projection, 6D pose and 5cm5degree scores
px_threshold = 5 # 5 pixel threshold for 2D reprojection error is standard in recent sota 6D object pose estimation works
eps = 1e-5
acc = len(np.where(np.array(errs_2d) <= px_threshold)[0]) * 100. / (len(errs_2d)+eps)
acc3d = len(np.where(np.array(errs_3d) <= vx_threshold)[0]) * 100. / (len(errs_3d)+eps)
acc5cm5deg = len(np.where((np.array(errs_trans) <= 0.05) & (np.array(errs_angle) <= 5))[0]) * 100. / (len(errs_trans)+eps)
corner_acc = len(np.where(np.array(errs_corner2D) <= px_threshold)[0]) * 100. / (len(errs_corner2D)+eps)
mean_err_2d = np.mean(errs_2d)
mean_corner_err_2d = np.mean(errs_corner2D)
nts = float(testing_samples)
if testtime:
print('-----------------------------------')
print(' tensor to cuda : %f' % (t2 - t1))
print(' predict : %f' % (t3 - t2))
print('get_region_boxes : %f' % (t4 - t3))
print(' eval : %f' % (t5 - t4))
print(' total : %f' % (t5 - t1))
print('-----------------------------------')
# Print test statistics
logging(" Mean corner error is %f" % (mean_corner_err_2d))
logging(' Acc using {} px 2D Projection = {:.2f}%'.format(px_threshold, acc))
logging(' Acc using {} vx 3D Transformation = {:.2f}%'.format(vx_threshold, acc3d))
logging(' Acc using 5 cm 5 degree metric = {:.2f}%'.format(acc5cm5deg))
logging(' Translation error: %f, angle error: %f' % (testing_error_trans/(nts+eps), testing_error_angle/(nts+eps)) )
# Register losses and errors for saving later on
testing_iters.append(niter)
testing_errors_trans.append(testing_error_trans/(nts+eps))
testing_errors_angle.append(testing_error_angle/(nts+eps))
testing_errors_pixel.append(testing_error_pixel/(nts+eps))
testing_accuracies.append(acc)
if __name__ == "__main__":
# Parse configuration files
parser = argparse.ArgumentParser(description='SingleShotPose')
parser.add_argument('--datacfg', type=str, default='cfg/ape.data') # data config
parser.add_argument('--modelcfg', type=str, default='cfg/yolo-pose.cfg') # network config
parser.add_argument('--initweightfile', type=str, default='cfg/darknet19_448.conv.23') # imagenet initialized weights
parser.add_argument('--pretrain_num_epochs', type=int, default=15) # how many epoch to pretrain
args = parser.parse_args()
datacfg = args.datacfg
modelcfg = args.modelcfg
initweightfile = args.initweightfile
pretrain_num_epochs = args.pretrain_num_epochs
# Parse configuration files
data_options = read_data_cfg(datacfg)
net_options = parse_cfg(modelcfg)[0]
trainlist = data_options['train']
testlist = data_options['valid']
gpus = data_options['gpus']
meshname = data_options['mesh']
num_workers = int(data_options['num_workers'])
backupdir = data_options['backup']
vx_threshold = float(data_options['diam']) * 0.1 # threshold for the ADD metric
if not os.path.exists(backupdir):
makedirs(backupdir)
batch_size = int(net_options['batch'])
max_batches = int(net_options['max_batches'])
learning_rate = float(net_options['learning_rate'])
momentum = float(net_options['momentum'])
decay = float(net_options['decay'])
nsamples = file_lines(trainlist)
batch_size = int(net_options['batch'])
nbatches = nsamples / batch_size
steps = [float(step)*nbatches for step in net_options['steps'].split(',')]
scales = [float(scale) for scale in net_options['scales'].split(',')]
bg_file_names = get_all_files('VOCdevkit/VOC2012/JPEGImages')
# Train parameters
max_epochs = int(net_options['max_epochs'])
num_keypoints = int(net_options['num_keypoints'])
# Test parameters
im_width = int(data_options['width'])
im_height = int(data_options['height'])
fx = float(data_options['fx'])
fy = float(data_options['fy'])
u0 = float(data_options['u0'])
v0 = float(data_options['v0'])
test_width = int(net_options['test_width'])
test_height = int(net_options['test_height'])
# Specify which gpus to use
use_cuda = True
seed = int(time.time())
torch.manual_seed(seed)
if use_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed)
# Specifiy the model and the loss
model = Darknet(modelcfg)
region_loss = RegionLoss(num_keypoints=9, num_classes=1, anchors=[], num_anchors=1, pretrain_num_epochs=15)
# Model settings
model.load_weights_until_last(initweightfile)
model.print_network()
model.seen = 0
region_loss.iter = model.iter
region_loss.seen = model.seen
processed_batches = model.seen//batch_size
init_width = model.width
init_height = model.height
init_epoch = model.seen//nsamples
# Variable to save
training_iters = []
training_losses = []
testing_iters = []
testing_losses = []
testing_errors_trans = []
testing_errors_angle = []
testing_errors_pixel = []
testing_accuracies = []
# Get the intrinsic camerea matrix, mesh, vertices and corners of the model
mesh = MeshPly(meshname)
vertices = np.c_[np.array(mesh.vertices), np.ones((len(mesh.vertices), 1))].transpose()
corners3D = get_3D_corners(vertices)
internal_calibration = get_camera_intrinsic(u0, v0, fx, fy)
# Specify the number of workers
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
# Get the dataloader for test data
test_loader = torch.utils.data.DataLoader(dataset.listDataset(testlist,
shape=(test_width, test_height),
shuffle=False,
transform=transforms.Compose([transforms.ToTensor(),]),
train=False),
batch_size=1, shuffle=False, **kwargs)
# Pass the model to GPU
if use_cuda:
model = model.cuda() # model = torch.nn.DataParallel(model, device_ids=[0]).cuda() # Multiple GPU parallelism
# Get the optimizer
params_dict = dict(model.named_parameters())
params = []
for key, value in params_dict.items():
if key.find('.bn') >= 0 or key.find('.bias') >= 0:
params += [{'params': [value], 'weight_decay': 0.0}]
else:
params += [{'params': [value], 'weight_decay': decay*batch_size}]
optimizer = optim.SGD(model.parameters(), lr=learning_rate/batch_size, momentum=momentum, dampening=0, weight_decay=decay*batch_size)
best_acc = -sys.maxsize
for epoch in range(init_epoch, max_epochs):
# TRAIN
niter = train(epoch)
# TEST and SAVE
if (epoch % 10 == 0) and (epoch > 15):
test(epoch, niter)
logging('save training stats to %s/costs.npz' % (backupdir))
np.savez(os.path.join(backupdir, "costs.npz"),
training_iters=training_iters,
training_losses=training_losses,
testing_iters=testing_iters,
testing_accuracies=testing_accuracies,
testing_errors_pixel=testing_errors_pixel,
testing_errors_angle=testing_errors_angle)
if (testing_accuracies[-1] > best_acc ):
best_acc = testing_accuracies[-1]
logging('best model so far!')
logging('save weights to %s/model.weights' % (backupdir))
model.save_weights('%s/model.weights' % (backupdir))
# shutil.copy2('%s/model.weights' % (backupdir), '%s/model_backup.weights' % (backupdir))