-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexample1.py
49 lines (39 loc) · 1.71 KB
/
example1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import starganlib as sg
from datasets.CelebA import CelebA
from datasets.HotOneWrapper import HotOneWrapper
import os
import torch
from torch.utils import data
import torchvision.datasets as datasets
from torchvision import transforms as T
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
dataset1Path = os.path.join(dirname, './data/dataset1/train')
crop_size=178
image_size=128
transform = []
transform.append(T.RandomHorizontalFlip())
transform.append(T.CenterCrop(crop_size))
transform.append(T.Resize(image_size))
transform.append(T.ToTensor())
transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
transform = T.Compose(transform)
dataset1 = HotOneWrapper(datasets.ImageFolder(dataset1Path, transform=transform), 2)
dataset2 = HotOneWrapper(datasets.ImageFolder(dataset1Path, transform=transform), 2)
dataset3 = HotOneWrapper(datasets.ImageFolder(dataset1Path, transform=transform), 2)
image_dir = "E:/AlexU/master/Computer Vision - Marwan/project/stargan/data/CelebA_nocrop/images"
attr_path = "E:/AlexU/master/Computer Vision - Marwan/project/stargan/data/list_attr_celeba.txt"
chosen_attributes = ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young']
celeba = CelebA(image_dir, attr_path, chosen_attributes, transform=transform)
hyper_parameters = sg.HyperParamters()
stargan = sg.StarGAN(hyper_parameters)
stargan.addDataset(dataset1, 2)
stargan.addDataset(dataset2, 2)
stargan.addDataset(dataset3, 2)
stargan.addDataset(celeba, 5)
training_parameters = sg.TrainingParams(
num_iters=1
)
stargan.train(training_parameters)
print("DONE ........")
print(torch.__path__)