-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproduce_example.py
53 lines (43 loc) · 1.53 KB
/
produce_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import producer as P
from datasets.CelebA import CelebA
from datasets.ImageWithTarget import ImageWithTarget
import os
import torch
from torch.utils import data
from PIL import Image
import torchvision.datasets as datasets
from torchvision import transforms as T
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
image_dir = os.path.join(dirname, './data/image_with_target')
target_path = os.path.join(image_dir, 'targets.txt')
model_save_dir = os.path.join(dirname, './pretrained_model')
results_dir = os.path.join(dirname, './results')
save_intermediate_dir = os.path.join(dirname, './intermediate')
crop_size=178
image_size=128
transform = []
# transform.append(T.RandomHorizontalFlip())
transform.append(T.CenterCrop(crop_size))
transform.append(T.Resize(image_size))
transform.append(T.ToTensor())
transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
transform = T.Compose(transform)
imageWithTargetDataset = ImageWithTarget(
image_dir=image_dir,
target_path=target_path,
transform=transform
)
# Only one dataset with 5 labels
dataset_labels_sizes = [5]
producer = P.Poducer(
dataset_labels_sizes=dataset_labels_sizes,
model_save_iter=200000,
model_save_dir=model_save_dir,
results_dir=results_dir,
batch_size=6,
save_intermediate=True,
save_intermediate_dir=save_intermediate_dir
)
producer.produce(imageWithTargetDataset)
print("DONE ........")