-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstarganlib.py
476 lines (380 loc) · 18.1 KB
/
starganlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import os
import time
import datetime
import torch
from torch.utils import data
import torch.nn.functional as F
from torchvision.utils import save_image
from model import Generator
from model import Discriminator
class HyperParamters(object):
def __init__(self,
image_size=128,
batch_size=3,
num_workers=1,
mode='train',
n_critic=1,
# Generator
g_lr=0.0001,
# Discriminator
d_lr=0.0001,
# Optimizer
adam_betas=(0.5, 0.999),
lambda_cls=1,
lambda_rec=10,
lambda_gp=10
):
"""Contructor"""
self.image_size = image_size
self.batch_size = batch_size
self.num_workers = num_workers
self.mode = mode
self.n_critic = n_critic
# Generator hyper parameters
self.g_lr = g_lr
# Discriminator hyper parameters
self.d_lr = d_lr
# Optimizer
self.adam_betas = adam_betas
self.lambda_cls = lambda_cls
self.lambda_rec = lambda_rec
self.lambda_gp = lambda_gp
class TrainingParams(object):
def __init__(self,
resume_iter=0,
resume_g_lr=0.0001,
resume_d_lr=0.0001,
num_iters=1, # 200000
num_iters_decay=1, # 100000
lr_update_step=1000,
log_step=1,
sample_step=1,
model_save_step=1,
sample_dir='./samples',
model_save_dir='./model'
):
"""Contructor"""
self.resume_iter = resume_iter
self.resume_g_lr = resume_g_lr
self.resume_d_lr = resume_d_lr
self.num_iters = num_iters
self.num_iters_decay = num_iters_decay
self.lr_update_step = lr_update_step
self.log_step = log_step
self.sample_step = sample_step
self.model_save_step = model_save_step
self.sample_dir = sample_dir
self.model_save_dir = model_save_dir
class StarGAN(object):
""" """
def __init__(self, hyper_parameters):
"""Contructor"""
# TODO Add validation for hyper parameters
self.h_params = hyper_parameters
self.model_ready = False
self.datasets = []
self.data_loaders = []
self.data_iterators = []
self.classes_num = []
self.total_classes_num = 0
self.num_datasets = 0
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def addDataset(self, dataset, classes_num):
"""Add Dataset"""
# Create data loaders for each dataset
# consider those data sets in hot vectors
self.datasets.append(dataset)
self.classes_num.append(classes_num)
self.total_classes_num += classes_num
data_loader = data.DataLoader(
dataset=dataset,
batch_size=self.h_params.batch_size,
shuffle=(self.h_params.mode=='train'),
num_workers=self.h_params.num_workers)
self.data_loaders.append(data_loader)
self.validateDataLoader(self.num_datasets)
self.data_iterators.append(iter(data_loader))
self.num_datasets += 1
self.model_ready = False
def validateDataLoader(self, datasetIndex):
data_iter = iter(self.data_loaders[datasetIndex])
x_real, hotOneVector = next(data_iter)
self.validateData(datasetIndex, x_real, hotOneVector)
def validateData(self, datasetIndex, x_real, hotOneVector):
x_real_shape = [self.h_params.batch_size, 3, self.h_params.image_size, self.h_params.image_size]
hotOneVector_shape = [self.h_params.batch_size, self.classes_num[datasetIndex]]
if not ( (x_real.shape[0] <= x_real_shape[0]) and
(list(x_real.shape[1:]) == x_real_shape[1:]) ):
raise Exception(
"x_real.shape must be [batch_size<={}, 3, image_size={}, image_size={}]."
" Found x_real.shape={}".format(
self.h_params.batch_size,
self.h_params.image_size,
self.h_params.image_size,
x_real.shape
))
if not ( (hotOneVector.shape[0] <= hotOneVector_shape[0]) and
(list(hotOneVector.shape[1:]) == hotOneVector_shape[1:]) ):
raise Exception(
"hotOneVector.shape must be [batch_size<={}, num_classes={}]."
" Found hotOneVector.shape={}".format(
self.h_params.batch_size,
self.classes_num[datasetIndex],
hotOneVector.shape
))
if torch.sum((hotOneVector < 0) & (hotOneVector > 1)) > 0:
raise Exception("hotOneVector must contain values of 0s and 1s only")
def next(self, datasetIndex):
try:
x_real, hotOneVector = next(self.data_iterators[datasetIndex])
except StopIteration:
self.data_iterators[datasetIndex] = iter(self.data_loaders[datasetIndex])
x_real, hotOneVector = next(self.data_iterators[datasetIndex])
self.validateData(datasetIndex, x_real, hotOneVector)
return x_real, hotOneVector
def classIndexToOneHotVector(self, class_index, num_classes):
res = torch.zeros(class_index.shape[0], num_classes)
res[torch.arange(class_index.shape[0]), class_index] = 1
return res
def datasetClassesIndeces(self, datasetIndex):
datasetClassesStartIndex = sum(self.classes_num[0:datasetIndex])
datasetClassesEndIndex = datasetClassesStartIndex + self.classes_num[datasetIndex]
return datasetClassesStartIndex, datasetClassesEndIndex
def cFromLabels(self, datasetIndex, label_org):
batch_size = label_org.shape[0]
zeros = torch.zeros(batch_size, sum(self.classes_num))
datasetClassesStartIndex, datasetClassesEndIndex = self.datasetClassesIndeces(datasetIndex)
zeros[:,datasetClassesStartIndex:datasetClassesEndIndex] = label_org
if self.num_datasets > 1:
mask = torch.zeros(batch_size, self.num_datasets)
mask[:,datasetIndex] = 1
c_org = torch.cat([zeros, mask], dim=1)
else:
c_org = zeros
return c_org
def build_model(self):
""" """
# Build generator
label_dimension = self.total_classes_num
if self.num_datasets > 1:
label_dimension += self.num_datasets
self.G = Generator(
self.h_params.image_size,
label_dimension
)
# Build Discriminator
self.D = Discriminator(
self.h_params.image_size,
self.total_classes_num
)
# Optimizers
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.h_params.g_lr, self.h_params.adam_betas)
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.h_params.d_lr, self.h_params.adam_betas)
self.G.to(self.device)
self.D.to(self.device)
self.model_ready = True
def classification_loss(self, logit, target):
"""Compute binary or softmax cross entropy loss."""
# TODO Which to use ??
return F.binary_cross_entropy_with_logits(logit, target, size_average=False) / logit.size(0)
# return F.cross_entropy(logit, target)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def prepareSamples(self):
sampleDatasetIndex = 0
# Fetch images from first dataset.
# sample_real is a list of images of size batch_size
# sample_real.shape = [batch_size, 3, image_size, image_size]
self.sample_real, _ = self.next(sampleDatasetIndex)
batch_size = self.sample_real.size(0)
self.sample_real = self.sample_real.to(self.device)
# Create targets for each class in each dataset
c_trg_list = []
for datasetIndex in range(self.num_datasets):
for i in range(self.classes_num[datasetIndex]):
# Set the target to be label i
target_class_index = torch.ones(batch_size, dtype=torch.long) * i
label_trg = self.classIndexToOneHotVector(target_class_index, self.classes_num[datasetIndex])
c_trg = self.cFromLabels(datasetIndex, label_trg)
# c_trg is the target tensor containing label i as the target for each sample
# c_trg.shape = [batch_size, sum(num_classes) + num_datasets]
c_trg_list.append(c_trg.to(self.device))
self.c_trg_list = c_trg_list
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def generateSamples(self, sample_dir, iterationNumber):
with torch.no_grad():
x_fake_list = [self.sample_real]
for c_trg in self.c_trg_list:
x_fake_list.append(self.G(self.sample_real, c_trg))
x_concat = torch.cat(x_fake_list, dim=3)
sample_path = os.path.join(sample_dir, '{}-images.jpg'.format(iterationNumber))
save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(sample_path))
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def save_model(self, model_save_dir, resume_iter):
G_path = os.path.join(model_save_dir, '{}-G.ckpt'.format(resume_iter))
D_path = os.path.join(model_save_dir, '{}-D.ckpt'.format(resume_iter))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
print('Saved model checkpoints from step {} into {}...'.format(
resume_iter,
model_save_dir
))
def restore_model(self, model_save_dir, resume_iter):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iter))
G_path = os.path.join(model_save_dir, '{}-G.ckpt'.format(resume_iter))
D_path = os.path.join(model_save_dir, '{}-D.ckpt'.format(resume_iter))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def log(self, elapsed_time, loss_log, iteration, num_iters, datasetIndex):
elapsed_time = str(datetime.timedelta(seconds=elapsed_time))[:-7]
log = "Elapsed [{}], Iteration [{}/{}], Dataset [{}]".format(elapsed_time, iteration, num_iters, datasetIndex)
for tag, value in loss_log.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
# TODO
# if self.use_tensorboard:
# for tag, value in loss.items():
# self.logger.scalar_summary(tag, value, i+1)
def preprocessInputData(self, datasetIndex):
# Fetch real images and labels.
# x_real.shape = [batch_size, 3, image_size, image_size]
x_real, hotOneVector = self.next(datasetIndex)
# label_org.shape = [batch_size, num_classes]
# c_org = [batch_size, sum(num_classes) + num_datasets]
label_org = hotOneVector # self.classIndexToOneHotVector(class_index, self.classes_num[datasetIndex])
c_org = self.cFromLabels(datasetIndex, label_org)
# Generate target domain labels randomly.
# label_trg.shape = [batch_size, num_classes]
# c_trg = [batch_size, sum(num_classes) + num_datasets]
rand_idx = torch.randperm(label_org.size(0))
label_trg = label_org[rand_idx]
c_trg = self.cFromLabels(datasetIndex, label_trg)
x_real = x_real.to(self.device) # Input images.
c_org = c_org.to(self.device) # Original domain labels.
c_trg = c_trg.to(self.device) # Target domain labels.
label_org = label_org.to(self.device) # Labels for computing classification loss.
label_trg = label_trg.to(self.device) # Labels for computing classification loss.
return x_real, label_org, label_trg, c_org, c_trg
def trainDiscriminator(self, datasetIndex, x_real, label_org, c_trg, loss_log):
# Compute loss with real images.
# out_cls are the scores for the classes.
# out_cls.shape = [batch_size, total_num_classes]
# out_src TODO ???
out_src, out_cls = self.D(x_real)
datasetClassesStartIndex, datasetClassesEndIndex = self.datasetClassesIndeces(datasetIndex)
out_cls = out_cls[:, datasetClassesStartIndex:datasetClassesEndIndex]
d_loss_real = - torch.mean(out_src)
d_loss_cls = self.classification_loss(out_cls, label_org)
# Compute loss with fake images.
x_fake = self.G(x_real, c_trg)
out_src, _ = self.D(x_fake.detach())
d_loss_fake = torch.mean(out_src)
# Compute loss for gradient penalty.
alpha = torch.rand(x_real.size(0), 1, 1, 1).to(self.device)
x_hat = (alpha * x_real.data + (1 - alpha) * x_fake.data).requires_grad_(True)
out_src, _ = self.D(x_hat)
d_loss_gp = self.gradient_penalty(out_src, x_hat)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + self.h_params.lambda_cls * d_loss_cls + self.h_params.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss_log['D/loss_real'] = d_loss_real.item()
loss_log['D/loss_fake'] = d_loss_fake.item()
loss_log['D/loss_cls'] = d_loss_cls.item()
loss_log['D/loss_gp'] = d_loss_gp.item()
def trainGenerator(self, datasetIndex, x_real, label_trg, c_org, c_trg, loss_log):
# Original-to-target domain.
x_fake = self.G(x_real, c_trg)
out_src, out_cls = self.D(x_fake)
datasetClassesStartIndex, datasetClassesEndIndex = self.datasetClassesIndeces(datasetIndex)
out_cls = out_cls[:, datasetClassesStartIndex:datasetClassesEndIndex]
g_loss_fake = - torch.mean(out_src)
g_loss_cls = self.classification_loss(out_cls, label_trg)
# Target-to-original domain.
x_reconst = self.G(x_fake, c_org)
g_loss_rec = torch.mean(torch.abs(x_real - x_reconst))
# Backward and optimize.
g_loss = g_loss_fake + self.h_params.lambda_rec * g_loss_rec + self.h_params.lambda_cls * g_loss_cls
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss_log['G/loss_fake'] = g_loss_fake.item()
loss_log['G/loss_rec'] = g_loss_rec.item()
loss_log['G/loss_cls'] = g_loss_cls.item()
def train(self, train_params=TrainingParams()):
""" """
if not self.model_ready :
self.build_model()
self.reset_data_iterators()
self.prepareSamples()
# TODO Used to resume training
start_iter = 0
if train_params.resume_iter > 0:
self.restore_model(train_params.model_save_dir, train_params.resume_iter)
start_iter = train_params.resume_iter
# Learning rate cache for decaying.
if train_params.resume_iter > 0:
g_lr = train_params.resume_g_lr
d_lr = train_params.resume_g_lr
else:
g_lr = self.h_params.g_lr
d_lr = self.h_params.d_lr
print('Start training...')
start_time = time.time()
for i in range(start_iter, train_params.num_iters):
for datasetIndex in range(self.num_datasets):
loss_log = {}
x_real, label_org, label_trg, c_org, c_trg = self.preprocessInputData(datasetIndex)
self.trainDiscriminator(datasetIndex, x_real, label_org, c_trg, loss_log)
# Train the generator once after n_critic iterations
if (i+1) % self.h_params.n_critic == 0:
self.trainGenerator(datasetIndex, x_real, label_trg, c_org, c_trg, loss_log)
# Print out training info.
if (i+1) % train_params.log_step == 0:
elapsed_time = time.time() - start_time
self.log(elapsed_time, loss_log, i+1, train_params.num_iters, datasetIndex)
# END datasets loop
# CONT. iterations loop
# Translate fixed images for debugging.
if (i+1) % train_params.sample_step == 0:
self.generateSamples(train_params.sample_dir, i+1)
# Save model checkpoints.
if (i+1) % train_params.model_save_step == 0:
self.save_model(train_params.model_save_dir, i+1)
# Decay learning rates.
if (i+1) % train_params.lr_update_step == 0 and (i+1) > (train_params.num_iters - train_params.num_iters_decay):
g_lr -= (self.h_params.g_lr / float(train_params.num_iters_decay))
d_lr -= (self.h_params.d_lr / float(train_params.num_iters_decay))
self.update_lr(g_lr, d_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
# END iterations loop
def reset_data_iterators(self):
for datasetIndex in range(self.num_datasets):
self.data_iterators[datasetIndex] = iter(self.data_loaders[datasetIndex])