-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_celeba.py
62 lines (52 loc) · 1.75 KB
/
train_celeba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import argparse
from torchvision import transforms as T
import starganlib as sg
from datasets.CelebA import CelebA
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Training configuration.
parser.add_argument('--batch_size', type=int, default=16, help='mini-batch size')
config = parser.parse_args()
crop_size=178
image_size=128
transform = []
transform.append(T.RandomHorizontalFlip())
transform.append(T.CenterCrop(crop_size))
transform.append(T.Resize(image_size))
transform.append(T.ToTensor())
transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
transform = T.Compose(transform)
dirname = os.path.dirname(__file__)
image_dir = os.path.join(dirname, "./data/CelebA_nocrop/images")
attr_path = os.path.join(dirname, "./data/list_attr_celeba.txt")
chosen_attributes = ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Male', 'Young']
celeba = CelebA(image_dir, attr_path, chosen_attributes, transform=transform)
hyper_parameters = sg.HyperParamters(
image_size=image_size,
batch_size=config.batch_size,
n_critic=5,
num_workers=1,
mode='train',
g_lr=0.0001,
d_lr=0.0001,
adam_betas=(0.5,0.999),
lambda_cls=1,
lambda_rec=10,
lambda_gp=10
)
stargan = sg.StarGAN(hyper_parameters)
stargan.addDataset(celeba, 5)
train_params = sg.TrainingParams(
resume_iter=0,
num_iters=20000,
num_iters_decay=100000,
lr_update_step=1000,
log_step=10,
sample_step=1000,
model_save_step=10000,
sample_dir='./samples',
model_save_dir='./model'
)
stargan.train(train_params)
print("DONE ........")