README > CUTLASS Utilities
CUTLASS utilities are additional template classes that facilitate recurring tasks. These are flexible implementations of needed functionality, but they are not expected to be efficient.
Applications should configure their builds to list /tools/util/include
in their include
paths.
Source code is in /tools/util/include/cutlass/util/
.
To allocate a tensor with storage in both host and device memory, use HostTensor
in
cutlass/util/host_tensor.h
template <typename Element, typename Layout>
class HostTensor;
This class is compatible with all CUTLASS numeric data types and layouts.
Example: column-major matrix storage of single-precision elements.
#include <cutlass/layout/matrix.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 32;
int columns = 16;
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});
return 0;
}
Internal host-side storage may be accessed via the following methods.
float *host_ptr = tensor.host_data();
cutlass::TensorRef<float, cutlass::layout::ColumnMajor> host_ref = tensor.host_ref();
cutlass::TensorView<float, cutlass::layout::ColumnMajor> host_view = tensor.host_view();
Device memory may be accessed similarly.
float *device_ptr = tensor.device_data();
cutlass::TensorRef<float, cutlass::layout::ColumnMajor> device_ref = tensor.device_ref();
cutlass::TensorView<float, cutlass::layout::ColumnMajor> device_view = tensor.device_view();
Printing to human-readable CSV output is accoplished with std::ostream::operator<<()
defined in
cutlass/util/tensor_view_io.h
.
Note, this assumes all views refer to host memory.
#include <cutlass/util/tensor_view_io.h>
int main() {
// Obtain a TensorView into host memory
cutlass::TensorView<float, cutlass::layout::ColumnMajor> view = tensor.host_view();
// Print to std::cout
std::cout << view << std::endl;
return 0;
}
Host and device memory must be explicitly synchronized by the application.
float idx = 0;
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < columns; ++j) {
// Write the element at location {i, j} in host memory
tensor.host_ref().at({i, j}) = idx;
idx += 0.5f;
}
}
// Copy host memory to device memory
tensor.sync_device();
// Obtain a device pointer usable in CUDA kernels
float *device_ptr = tensor.device_data();
HostTensor<>
is usable by all CUTLASS layouts including interleaved layouts.
int rows = 4;
int columns = 3;
cutlass::HostTensor<float, cutlass::layout::ColumnMajorInterleaved<4>> tensor({rows, columns});
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < columns; ++j) {
// Write the element at location {i, j} in host memory
tensor.host_ref().at({i, j}) = float(i) * 1.5f - float(j) * 2.25f;
}
}
std::cout << tensor.host_view() << std::endl;
To strictly allocate memory on the device using the smart pointer pattern to manage allocation and deallocation,
use cutlass::DeviceAllocation<>
.
Example: allocating an array in device memory.
#include <cutlass/layout/matrix.h>
#include <cutlass/layout/tensor_view.h>
#include <cutlass/util/device_memory.h>
__global__ void kernel(float *device_ptr) {
}
int main() {
size_t N = 1024;
cutlass::DeviceAllocation<float> device_alloc(N);
// Call a CUDA kernel passing device memory as a pointer argument
kernel<<< grid, block >>>(alloc.get());
if (cudaGetLastError() != cudaSuccess) {
return -1;
}
// Device memory is automatically freed when device_alloc goes out of scope
return 0;
}
CUTLASS defines several utility functions to initialize tensors to uniform, procedural, or randomly generated elements. These have implementations using strictly host code and implementations using strictly CUDA device code.
TensorFill()
for uniform elements throughout a tensor.
#include <cutlass/layout/matrix.h>
#include <cutlass/util/reference/host/tensor_fill.h>
#include <cutlass/util/reference/device/tensor_fill.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 128;
int columns = 64;
float x = 3.14159f;
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});
// Initialize in host memory
cutlass::reference::host::TensorFill(tensor.host_view(), x);
// Initialize in device memory
cutlass::reference::device::TensorFill(tensor.device_view(), x);
return 0;
}
TensorFillRandomUniform()
for initializing elements to a random uniform distribution.
The device-side implementation uses CURAND to generate random numbers.
#include <cutlass/layout/matrix.h>
#include <cutlass/util/reference/host/tensor_fill.h>
#include <cutlass/util/reference/device/tensor_fill.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 128;
int columns = 64;
double maximum = 4;
double minimum = -4;
uint64_t seed = 0x2019;
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});
// Initialize in host memory
cutlass::reference::host::TensorFillRandomUniform(
tensor.host_view(),
seed,
maximum,
minimum);
// Initialize in device memory
cutlass::reference::device::TensorFill(
tensor.device_view(),
seed,
maximum,
minimum);
return 0;
}
TensorFillRandomUniform()
for initializing elements to a random uniform distribution.
The device-side implementation uses CURAND to generate random numbers.
#include <cutlass/layout/matrix.h>
#include <cutlass/util/reference/host/tensor_fill.h>
#include <cutlass/util/reference/device/tensor_fill.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 128;
int columns = 64;
double mean = 0.5;
double stddev = 2.0;
uint64_t seed = 0x2019;
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});
// Initialize in host memory
cutlass::reference::host::TensorFillRandomGaussian(
tensor.host_view(),
seed,
mean,
stddev);
// Initialize in device memory
cutlass::reference::device::TensorFillRandomGaussian(
tensor.device_view(),
seed,
mean,
stddev);
return 0;
}
Each of these functions accepts an additional argument to specify how many bits of the mantissa less than 1 are non-zero. This simplifies functional comparisons when exact random distributions are not necessary, since elements may be restricted to integers or values with exact fixed-point representations.
#include <cutlass/layout/matrix.h>
#include <cutlass/util/reference/host/tensor_fill.h>
#include <cutlass/util/reference/device/tensor_fill.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 128;
int columns = 64;
double mean = 0.5;
double stddev = 2.0;
uint64_t seed = 0x2019;
int bits_right_of_binary_decimal = 2;
cutlass::HostTensor<float, cutlass::layout::ColumnMajor> tensor({rows, columns});
// Initialize in host memory
cutlass::reference::host::TensorFillRandomGaussian(
tensor.host_view(),
seed,
mean,
stddev,
bits_right_of_binary_decimal);
// Initialize in device memory
cutlass::reference::device::TensorFillRandomGaussian(
tensor.device_view(),
seed,
mean,
stddev,
bits_right_of_binary_decimal);
return 0;
}
These utilities may be used for all data types.
Example: random half-precision tensor with Gaussian distribution.
#include <cutlass/numeric_types.h>
#include <cutlass/layout/matrix.h>
#include <cutlass/util/reference/host/tensor_fill.h>
#include <cutlass/util/reference/device/tensor_fill.h>
#include <cutlass/util/host_tensor.h>
int main() {
int rows = 128;
int columns = 64;
double mean = 0.5;
double stddev = 2.0;
uint64_t seed = 0x2019;
// Allocate a column-major tensor with half-precision elements
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> tensor({rows, columns});
// Initialize in host memory
cutlass::reference::host::TensorFillRandomGaussian(
tensor.host_view(),
seed,
mean,
stddev);
// Initialize in device memory
cutlass::reference::device::TensorFillRandomGaussian(
tensor.device_view(),
seed,
mean,
stddev);
return 0;
}
CUTLASS defines reference implementations usable with all data types and layouts. These are used throughout the unit tests.
Example: Reference GEMM implementation with mixed precision internal computation.
#include <cutlass/numeric_types.h>
#include <cutlass/layout/matrix.h>
#include <cutlass/util/host_tensor.h>
#include <cutlass/util/reference/host/gemm.h>
int main() {
int M = 64;
int N = 32;
int K = 16;
float alpha = 1.5f;
float beta = -1.25f;
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> A({M, K});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> B({K, N});
cutlass::HostTensor<cutlass::half_t, cutlass::layout::ColumnMajor> C({M, N});
cutlass::reference::host::Gemm<
cutlass::half_t, cutlass::layout::ColumnMajor, // ElementA and LayoutA
cutlass::half_t, cutlass::layout::ColumnMajor, // ElementB and LayoutB
cutlass::half_t, cutlass::layout::ColumnMajor, // ElementC and LayoutC
float, // scalar type (alpha and beta)
float> gemm_op; // internal accumulation type
gemm_op(
{M, N, K}, // problem size
alpha, // alpha scalar
A.host_view(), // TensorView to host memory
B.host_view(), // TensorView to host memory
beta, // beta scalar
C.host_view(), // TensorView to host memory
D.host_view()); // TensorView to device memory
return 0;
}
Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
* Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.