This repository has been archived by the owner on Aug 24, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 67
/
eval.py
169 lines (151 loc) · 7.32 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!python3
import argparse
import os
import torch
import yaml
from tqdm import tqdm
from trainer import Trainer
import ipdb
# tagged yaml objects
from experiment import Structure, TrainSettings, ValidationSettings, Experiment
from concern.log import Logger
from data.data_loader import DataLoader
from data.mnist import MNistDataset
from data.nori_dataset import NoriDataset
from training.checkpoint import Checkpoint
from training.learning_rate import (
ConstantLearningRate, PriorityLearningRate, FileMonitorLearningRate
)
from training.model_saver import ModelSaver
from training.optimizer_scheduler import OptimizerScheduler
from concern.config import Configurable, Config
def main():
parser = argparse.ArgumentParser(description='Text Recognition Training')
parser.add_argument('exp', type=str)
parser.add_argument('--name', type=str)
parser.add_argument('--batch_size', type=int,
help='Batch size for training')
parser.add_argument('--resume', type=str, help='Resume from checkpoint')
parser.add_argument('--epochs', type=int, help='Number of training epochs')
parser.add_argument('--start_iter', type=int,
help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--start_epoch', type=int,
help='Begin counting epoch starting from this value (should be used with resume)')
parser.add_argument('--max_size', type=int, help='max length of label')
parser.add_argument('--data', type=str,
help='The name of dataloader which will be evaluated on.')
parser.add_argument('--thresh', type=float,
help='The threshold to replace it in the representers')
parser.add_argument('--box_thresh', type=float,
help='The threshold to replace it in the representers')
parser.add_argument('--verbose', action='store_true',
help='show verbose info')
parser.add_argument('--no-verbose', action='store_true',
help='show verbose info')
parser.add_argument('--visualize', action='store_true',
help='visualize maps in tensorboard')
parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
help='Show iamges eagerly')
parser.add_argument('--speed', action='store_true', dest='test_speed',
help='Test speed only')
parser.add_argument('--dest', type=str,
help='Specify which prediction will be used for decoding.')
parser.add_argument('--debug', action='store_true', dest='debug',
help='Run with debug mode, which hacks dataset num_samples to toy number')
parser.add_argument('--no-debug', action='store_false',
dest='debug', help='Run without debug mode')
parser.add_argument('-d', '--distributed', action='store_true',
dest='distributed', help='Use distributed training')
parser.add_argument('--local_rank', dest='local_rank', default=0,
type=int, help='Use distributed training')
parser.add_argument('-g', '--num_gpus', dest='num_gpus', default=4,
type=int, help='The number of accessible gpus')
parser.set_defaults(debug=False, verbose=False)
args = parser.parse_args()
args = vars(args)
args = {k: v for k, v in args.items() if v is not None}
conf = Config()
experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
experiment_args.update(cmd=args)
experiment = Configurable.construct_class_from_config(experiment_args)
Eval(experiment, experiment_args, cmd=args, verbose=args['verbose']).eval(args['visualize'])
class Eval:
def __init__(self, experiment, args, cmd=dict(), verbose=False):
self.experiment = experiment
experiment.load('evaluation', **args)
self.data_loaders = experiment.evaluation.data_loaders
self.args = cmd
self.logger = experiment.logger
model_saver = experiment.train.model_saver
self.structure = experiment.structure
self.model_path = cmd.get(
'resume', os.path.join(
self.logger.save_dir(model_saver.dir_path),
'final'))
self.verbose = verbose
def init_torch_tensor(self):
# Use gpu or not
torch.set_default_tensor_type('torch.FloatTensor')
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
def init_model(self):
model = self.structure.builder.build(self.device)
return model
def resume(self, model, path):
if not os.path.exists(path):
self.logger.warning("Checkpoint not found: " + path)
return
self.logger.info("Resuming from " + path)
states = torch.load(
path, map_location=self.device)
model.load_state_dict(states, strict=False)
self.logger.info("Resumed from " + path)
def report_speed(self, model, batch, times=100):
import time
data = {k: v[0:1]for k, v in batch.items()}
cuda = torch.cuda.is_available()
if cuda:
torch.cuda.synchronize()
start = time.time()
for _ in range(times):
model.forward(data)
if cuda:
torch.cuda.synchronize()
time_cost = (time.time() - start) / times
self.logger.info('Params: %s, Inference speed: %fms, FPS: %f' % (
str(sum(p.numel() for p in model.parameters() if p.requires_grad)),
time_cost * 1000, 1 / time_cost))
def eval(self, visualize=False):
self.init_torch_tensor()
model = self.init_model()
self.resume(model, self.model_path)
all_matircs = {}
model.eval()
vis_images = dict()
with torch.no_grad():
for name, data_loader in self.data_loaders.items():
raw_metrics = []
if self.args.get('data', None) and not self.args['data'] == name:
continue
for i, batch in tqdm(enumerate(data_loader), total=len(data_loader)):
if self.args['test_speed']:
self.report_speed(model, batch)
continue
pred = model.forward(batch, training=False)
output = self.structure.representer.represent(batch, pred)
raw_metric, interested = self.structure.measurer.validate_measure(batch, output)
raw_metrics.append(raw_metric)
if visualize and self.structure.visualizer:
vis_image = self.structure.visualizer.visualize(batch, output, interested)
self.logger.save_image_dict(vis_image)
vis_images.update(vis_image)
metrics = self.structure.measurer.gather_measure(raw_metrics, self.logger)
for key, metric in metrics.items():
self.logger.info('%s : %f (%d)' % (key, metric.avg, metric.count))
all_matircs[name + '/' + key] = metric
for key, metric in all_matircs.items():
self.logger.info('%s : %f (%d)' % (key, metric.avg, metric.count))
if __name__ == '__main__':
main()