-
Notifications
You must be signed in to change notification settings - Fork 78
/
demo.py
141 lines (128 loc) · 4.94 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import cv2
import torch
from manopth import manolayer
from model.detnet import detnet
from utils import func, bone, AIK, smoother
import numpy as np
import matplotlib.pyplot as plt
from utils import vis
from op_pso import PSO
import open3d
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
_mano_root = 'mano/models'
module = detnet().to(device)
print('load model start')
check_point = torch.load('new_check_point/ckp_detnet_83.pth', map_location=device)
model_state = module.state_dict()
state = {}
for k, v in check_point.items():
if k in model_state:
state[k] = v
else:
print(k, ' is NOT in current model')
model_state.update(state)
module.load_state_dict(model_state)
print('load model finished')
pose, shape = func.initiate("zero")
pre_useful_bone_len = np.zeros((1, 15))
pose0 = torch.eye(3).repeat(1, 16, 1, 1)
mano = manolayer.ManoLayer(flat_hand_mean=True,
side="right",
mano_root=_mano_root,
use_pca=False,
root_rot_mode='rotmat',
joint_rot_mode='rotmat')
print('start opencv')
point_fliter = smoother.OneEuroFilter(4.0, 0.0)
mesh_fliter = smoother.OneEuroFilter(4.0, 0.0)
shape_fliter = smoother.OneEuroFilter(4.0, 0.0)
cap = cv2.VideoCapture(0)
print('opencv finished')
flag = 1
plt.ion()
f = plt.figure()
fliter_ax = f.add_subplot(111, projection='3d')
plt.show()
view_mat = np.array([[1.0, 0.0, 0.0],
[0.0, -1.0, 0],
[0.0, 0, -1.0]])
mesh = open3d.geometry.TriangleMesh()
hand_verts, j3d_recon = mano(pose0, shape.float())
mesh.triangles = open3d.utility.Vector3iVector(mano.th_faces)
hand_verts = hand_verts.clone().detach().cpu().numpy()[0]
mesh.vertices = open3d.utility.Vector3dVector(hand_verts)
viewer = open3d.visualization.Visualizer()
viewer.create_window(width=480, height=480, window_name='mesh')
viewer.add_geometry(mesh)
viewer.update_renderer()
print('start pose estimate')
pre_uv = None
shape_time = 0
opt_shape = None
shape_flag = True
while (cap.isOpened()):
ret_flag, img = cap.read()
input = np.flip(img.copy(), -1)
k = cv2.waitKey(1) & 0xFF
if input.shape[0] > input.shape[1]:
margin = (input.shape[0] - input.shape[1]) // 2
input = input[margin:-margin]
else:
margin = (input.shape[1] - input.shape[0]) // 2
input = input[:, margin:-margin]
img = input.copy()
img = np.flip(img, -1)
cv2.imshow("Capture_Test", img)
input = cv2.resize(input, (128, 128))
input = torch.tensor(input.transpose([2, 0, 1]), dtype=torch.float, device=device) # hwc -> chw
input = func.normalize(input, [0.5, 0.5, 0.5], [1, 1, 1])
result = module(input.unsqueeze(0))
pre_joints = result['xyz'].squeeze(0)
now_uv = result['uv'].clone().detach().cpu().numpy()[0, 0]
now_uv = now_uv.astype(np.float)
trans = np.zeros((1, 3))
trans[0, 0:2] = now_uv - 16.0
trans = trans / 16.0
new_tran = np.array([[trans[0, 1], trans[0, 0], trans[0, 2]]])
pre_joints = pre_joints.clone().detach().cpu().numpy()
flited_joints = point_fliter.process(pre_joints)
fliter_ax.cla()
filted_ax = vis.plot3d(flited_joints + new_tran, fliter_ax)
pre_useful_bone_len = bone.caculate_length(pre_joints, label="useful")
NGEN = 100
popsize = 100
low = np.zeros((1, 10)) - 3.0
up = np.zeros((1, 10)) + 3.0
parameters = [NGEN, popsize, low, up]
pso = PSO(parameters, pre_useful_bone_len.reshape((1, 15)),_mano_root)
pso.main()
opt_shape = pso.ng_best
opt_shape = shape_fliter.process(opt_shape)
opt_tensor_shape = torch.tensor(opt_shape, dtype=torch.float)
_, j3d_p0_ops = mano(pose0, opt_tensor_shape)
template = j3d_p0_ops.cpu().numpy().squeeze(0) / 1000.0 # template, m 21*3
ratio = np.linalg.norm(template[9] - template[0]) / np.linalg.norm(pre_joints[9] - pre_joints[0])
j3d_pre_process = pre_joints * ratio # template, m
j3d_pre_process = j3d_pre_process - j3d_pre_process[0] + template[0]
pose_R = AIK.adaptive_IK(template, j3d_pre_process)
pose_R = torch.from_numpy(pose_R).float()
# reconstruction
hand_verts, j3d_recon = mano(pose_R, opt_tensor_shape.float())
mesh.triangles = open3d.utility.Vector3iVector(mano.th_faces)
hand_verts = hand_verts.clone().detach().cpu().numpy()[0]
hand_verts = mesh_fliter.process(hand_verts)
hand_verts = np.matmul(view_mat, hand_verts.T).T
hand_verts[:, 0] = hand_verts[:, 0] - 50
hand_verts[:, 1] = hand_verts[:, 1] - 50
mesh_tran = np.array([[-new_tran[0, 0], new_tran[0, 1], new_tran[0, 2]]])
hand_verts = hand_verts - 100 * mesh_tran
mesh.vertices = open3d.utility.Vector3dVector(hand_verts)
mesh.paint_uniform_color([228 / 255, 178 / 255, 148 / 255])
mesh.compute_triangle_normals()
mesh.compute_vertex_normals()
viewer.update_geometry(mesh)
viewer.poll_events()
if k == ord('q'):
break
cap.release()
cv2.destroyAllWindows()