-
Notifications
You must be signed in to change notification settings - Fork 1
/
round2-full-3-known-plaintext.c
573 lines (474 loc) · 24.3 KB
/
round2-full-3-known-plaintext.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/***
* Differential Attack on full 2-round AES (with last MixColumns) with only 3 known-plaintext
* Author: Merricx
* AES implementation is from https://github.com/kokke/tiny-AES-c
*
* Compile:
* gcc aes.c round2-full-3-known-plaintext.c -o round2-full-3-known-plaintext -lpthread
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <pthread.h>
#include "aes.h"
#define MAXBUFLEN 16
#define NUM_THREAD 4 // Number of thread in one execution
unsigned char *plaintext1;
unsigned char *plaintext2;
unsigned char *plaintext3;
unsigned char *ciphertext1;
unsigned char *ciphertext2;
unsigned char *ciphertext3;
const uint8_t SBOX[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
const uint8_t INV_SBOX[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
const uint8_t RCON[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
const uint8_t gmul_by_2[256] = {
0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e,
0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e,
0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e,
0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e,
0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e,
0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe,
0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde,
0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe,
0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05,
0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25,
0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45,
0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65,
0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85,
0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5,
0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5,
0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5
};
const uint8_t gmul_by_3[256] = {
0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11,
0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21,
0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71,
0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41,
0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1,
0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1,
0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1,
0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81,
0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a,
0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba,
0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea,
0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda,
0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a,
0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a,
0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a,
0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a
};
void xor(uint8_t* diff, const char* c1, const char* c2, int size){
for(int i=0; i<size; i++){
diff[i] = c1[i] ^ c2[i];
}
}
void readFile(char* buf, const char* name){
FILE *fp = fopen(name, "r");
if (fp != NULL){
size_t newLen = fread(buf, sizeof(char), MAXBUFLEN, fp);
if ( ferror( fp ) != 0 ) {
fputs("Error reading file", stderr);
} else {
buf[newLen++] = '\0';
}
fclose(fp);
}
}
void writeFile(char* buf, const char* name){
FILE *fp = fopen(name, "w");
if(fp != NULL){
fprintf(fp, "%.16s", buf);
fclose(fp);
}
}
/**
* Attack Phase 2
*
* After we recover Rk0 of bytes (0,5,10,15), we start iterate over Rk0 of bytes (7, 8)
*/
int attack_phase2(uint8_t round_key[][16], const uint8_t* diff_c1_c2, const uint8_t* diff_c1_c3){
for(int i=0; i < 256; i++){
for(int j=0; j < 256; j++){
/**
* We construct following Rk0
* where K is known value
* and x is value we brute-force
*
* [
* K, 0, x, 0,
* 0, K, 0, K,
* K, 0, K, 0,
* 0, x, 0, K
* ]
*
*/
round_key[0][7] = j;
round_key[0][8] = i;
uint8_t guess_key[16];
memcpy(guess_key, round_key[0], 16);
int possible_key1[4][256] = {{-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}};
int possible_key2[4][256] = {{-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}};
unsigned char p1[16];
unsigned char p2[16];
unsigned char p3[16];
strncpy(p1, plaintext1, 16);
strncpy(p2, plaintext2, 16);
strncpy(p3, plaintext3, 16);
uint8_t diff_p1_p2[16];
uint8_t diff_p2_p3[16];
uint8_t diff_p1_p3[16];
// Plaintext 1 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p1, guess_key);
SubBytes((state_t*)p1);
ShiftRows((state_t*)p1);
MixColumns((state_t*)p1);
// Plaintext 2 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p2, guess_key);
SubBytes((state_t*)p2);
ShiftRows((state_t*)p2);
MixColumns((state_t*)p2);
// Plaintext 3 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p3, guess_key);
SubBytes((state_t*)p3);
ShiftRows((state_t*)p3);
MixColumns((state_t*)p3);
// Calculate differential of P1 and P2
xor(diff_p1_p2, p1, p2, 16);
// Calculate differential of P1 and P3
xor(diff_p1_p3, p1, p3, 16);
int is_correct = 1;
for(int bi=0; bi<4;bi++){
int current_index1 = 0;
int current_index2 = 0;
for(unsigned int m=0; m<256;m++){
for(unsigned int n=0; n<256;n++){
if(m == n){
continue;
}
unsigned int input_diff = m ^ n;
if(input_diff == diff_p1_p2[8+bi]){
unsigned int sbox_out_diff = SBOX[m] ^ SBOX[n];
if(sbox_out_diff == diff_c1_c2[8+bi]){
possible_key1[bi][current_index1] = m ^ p1[8+bi];
current_index1++;
}
}
if(input_diff == diff_p1_p3[8+bi]){
unsigned int sbox_out_diff = SBOX[m] ^ SBOX[n];
if(sbox_out_diff == diff_c1_c3[8+bi]){
possible_key2[bi][current_index2] = m ^ p3[8+bi];
current_index2++;
}
}
}
}
if(current_index1 == 0 || current_index2 == 0){
is_correct = 0;
break;
}
}
if(is_correct==0){
continue;
}
int correct_rk1_col2[4];
int count = 0;
for(int bi=0; bi<4;bi++){
for(int x=0; x<4;x++){
if(possible_key1[bi][x] < 0){
break;
}
for(int y=0; y<4;y++){
if(possible_key1[bi][x] < 256 && possible_key1[bi][x] >= 0 &&
possible_key1[bi][x] == possible_key2[bi][y]){
correct_rk1_col2[bi] = possible_key1[bi][x];
count++;
}
}
}
}
if(count>=4){
printf("FOUND ROUND KEY -> [%d, %d, %d, %d]\n", correct_rk1_col2[0], correct_rk1_col2[1], correct_rk1_col2[2], correct_rk1_col2[3]);
round_key[1][8] = correct_rk1_col2[0];
round_key[1][9] = correct_rk1_col2[1];
round_key[1][10] = correct_rk1_col2[2];
round_key[1][11] = correct_rk1_col2[3];
// Get value of Rk1[7], Rk1[13], and Rk1[15] from Key Schedule relation
round_key[1][7] = round_key[0][7] ^ round_key[1][3];
round_key[1][13] = round_key[0][13] ^ round_key[1][9];
round_key[1][15] = round_key[0][15] ^ round_key[1][11];
// Get value of Rk1[4] and Rk1[6] from key schedule relation
round_key[1][4] = round_key[1][8] ^ round_key[0][8];
round_key[1][6] = round_key[1][10] ^ round_key[0][10];
// Get value of Rk2[0] and Rk2[2] using Key schedule relation
round_key[2][0] = SBOX[round_key[1][13]] ^ round_key[1][0] ^ RCON[2];
round_key[2][2] = SBOX[round_key[1][15]] ^ round_key[1][2];
// Get value of InvMixColumns(Rk2[0]) and InvMixColumns(Rk2[2])
// by comparing p1 after ShiftRows round 2 with InvMixColumns(c1)
unsigned char c1[16];
uint8_t u2[16]; // InvMixColumns(Rk2)
strncpy(c1, ciphertext1, 16);
InvMixColumns((state_t*)c1);
AddRoundKey(0, (state_t*)p1, round_key[1]);
SubBytes((state_t*)p1);
ShiftRows((state_t*)p1);
xor(u2, p1, c1, 16);
// Get value of Rk2[1] and Rk2[3] using relation of InvMixColumns(Rk2) and Rk2
// Basically we solve following two linear equation:
// Rk2[0] = 2*u2[0] ^ 3*u2[1] ^ u2[2] ^ u2[3]
// Rk2[2] = u2[0] ^ u2[1] ^ 2*u2[2] ^ 3*u2[3]
// where we know value of Rk2[0], Rk[2], u2[0], and u2[2]
// note: u2 = InvMixColumns(Rk2)
for(unsigned int x=0; x < 256; x++){
unsigned int x3 = gmul_by_3[x];
unsigned int y = gmul_by_2[u2[0]] ^ u2[2] ^ round_key[2][0] ^ x3;
unsigned int check = u2[0] ^ x ^ gmul_by_2[u2[2]] ^ round_key[2][2];
unsigned int y3 = gmul_by_3[y];
if(check == y3){
round_key[2][1] = u2[0] ^ gmul_by_2[x] ^ gmul_by_3[u2[2]] ^ y;
round_key[2][3] = gmul_by_3[u2[0]] ^ x ^ u2[2] ^ gmul_by_2[y];
break;
}
}
// Get Rk1[12] and Rk1[14] from Key schedule relation
round_key[1][12] = INV_SBOX[round_key[1][3] ^ round_key[2][3]];
round_key[1][14] = INV_SBOX[round_key[1][1] ^ round_key[2][1]];
// We've got all bytes of Rk1 now!!!
// Write Round Key 1 to data/output.bin and let python handle the rest
writeFile((char *)round_key[1], "data/output.bin");
printf("ROUND KEY 1: [");
for(int bi=0;bi<15;bi++){
printf("%d,", round_key[1][bi]);
}
printf("%d]\n", round_key[1][15]);
return 1;
}
}
}
return 0;
}
/**
* Attack Phase 1
*
* Iterate over Rk0 of bytes (0,5,10,15) and recover Rk1 of bytes (0,1,2,3)
* Use Multi-threading for faster execution
*/
void *attack(void *vargp){
uint8_t round_key[3][16];
uint8_t diff_c1_c2[16];
uint8_t diff_c1_c3[16];
uint8_t diff_c2_c3[16];
int start = *((int *) vargp);
int end = start + (256 / NUM_THREAD);
xor(diff_c1_c2, ciphertext1, ciphertext2, 16);
xor(diff_c1_c3, ciphertext1, ciphertext3, 16);
xor(diff_c2_c3, ciphertext2, ciphertext3, 16);
InvMixColumns((state_t*)diff_c1_c2);
InvShiftRows((state_t*)diff_c1_c2);
InvMixColumns((state_t*)diff_c1_c3);
InvShiftRows((state_t*)diff_c1_c3);
InvMixColumns((state_t*)diff_c2_c3);
InvShiftRows((state_t*)diff_c2_c3);
// Iterate over Rk0 of index byte (0,5,10,15)
for(int i=start; i<end; i++){
for(int j=0; j<256; j++){
printf("Enumerate Rk0 (%d,%d,x,x)...\n", i, j);
for(int k=0; k<256; k++){
for(int l=0; l<256; l++){
uint8_t guess_key[16] = {
i,0,0,0,
0,j,0,0,
0,0,k,0,
0,0,0,l
};
int possible_key1[4][256] = {{-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}};
int possible_key2[4][256] = {{-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}, {-1,-1,-1,-1}};
unsigned char p1[16];
unsigned char p2[16];
unsigned char p3[16];
strncpy(p1, plaintext1, 16);
strncpy(p2, plaintext2, 16);
strncpy(p3, plaintext3, 16);
uint8_t diff_p1_p2[16];
uint8_t diff_p2_p3[16];
uint8_t diff_p1_p3[16];
// Plaintext 1 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p1, guess_key);
SubBytes((state_t*)p1);
ShiftRows((state_t*)p1);
MixColumns((state_t*)p1);
// Plaintext 2 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p2, guess_key);
SubBytes((state_t*)p2);
ShiftRows((state_t*)p2);
MixColumns((state_t*)p2);
// Plaintext 3 to Round 2 before SubBytes
AddRoundKey(0, (state_t*)p3, guess_key);
SubBytes((state_t*)p3);
ShiftRows((state_t*)p3);
MixColumns((state_t*)p3);
// Calculate differential of P1 and P2
xor(diff_p1_p2, p1, p2, 16);
// Calculate differential of P1 and P3
xor(diff_p1_p3, p1, p3, 16);
// Calculate differential of P2 and P3
//xor(diff_p2_p3, p2, p3, 16);
// Check value on Rk1_col(0) by comparing input and output of SBOX
int is_correct = 1;
for(int bi=0; bi<4;bi++){
int current_index1 = 0;
int current_index2 = 0;
for(unsigned int m=0; m<256;m++){
for(unsigned int n=0; n<256;n++){
if(m == n){
continue;
}
unsigned int input_diff = m ^ n;
if(input_diff == diff_p1_p2[bi]){
unsigned int sbox_out_diff = SBOX[m] ^ SBOX[n];
if(sbox_out_diff == diff_c1_c2[bi]){
possible_key1[bi][current_index1] = m ^ p1[bi];
current_index1++;
}
}
if(input_diff == diff_p1_p3[bi]){
unsigned int sbox_out_diff = SBOX[m] ^ SBOX[n];
if(sbox_out_diff == diff_c1_c3[bi]){
possible_key2[bi][current_index2] = m ^ p3[bi];
current_index2++;
}
}
}
}
if(current_index1 == 0 || current_index2 == 0){
is_correct = 0;
break;
}
}
if(is_correct==0){
continue;
}
// Check duplicate possible key
// If there's duplicate on each bi of the key, then we get the correct key
int correct_rk1_col0[4] = {-1,-1,-1,-1};
int count = 0;
for(int bi=0; bi<4;bi++){
for(int x=0; x<4;x++){
if(possible_key1[bi][x] < 0){
break;
}
for(int y=0; y<4;y++){
if(possible_key1[bi][x] < 256 && possible_key1[bi][x] >= 0 &&
possible_key1[bi][x] == possible_key2[bi][y]){
correct_rk1_col0[bi] = possible_key1[bi][x];
count++;
}
}
}
}
// We found correct key!!!
// There's still possibility of false positive tho with prob. 2**-32
// Until here we know actual value of Rk0(0,5,10,15) and Rk1(0,1,2,3)
if(correct_rk1_col0[0]>=0 && correct_rk1_col0[1]>=0 && correct_rk1_col0[2]>=0 && correct_rk1_col0[3]>=0){
if(count != 4){
printf("There's multiple possible solution");
}
printf("FOUND ROUND KEY -> [%d,%d,%d,%d] -> ", i,j,k,l);
printf("[%d,%d,%d,%d]\n", correct_rk1_col0[0],correct_rk1_col0[1],correct_rk1_col0[2],correct_rk1_col0[3]);
round_key[0][0] = i;
round_key[0][5] = j;
round_key[0][10] = k;
round_key[0][15] = l;
round_key[1][0] = correct_rk1_col0[0];
round_key[1][1] = correct_rk1_col0[1];
round_key[1][2] = correct_rk1_col0[2];
round_key[1][3] = correct_rk1_col0[3];
// Get value of Rk0[2] and Rk0[13] from key schedule relation
round_key[0][2] = round_key[1][2] ^ SBOX[round_key[0][15]];
round_key[0][13] = INV_SBOX[round_key[0][0] ^ round_key[1][0] ^ RCON[1]];
// Get value of Rk1[5] where Rk1[5] = Rk0[5] ^ Rk1[2]
round_key[1][5] = round_key[0][5] ^ round_key[1][1];
// Start Attack Phase 2
if(!attack_phase2(round_key, diff_c1_c2, diff_c1_c3)){
continue;
}
free(vargp);
exit(0); // Too lazy to stop other thread lol
}
}
}
}
}
free(vargp);
}
int main(int argc, char *argv[]){
if(argc == 7){
plaintext1 = malloc(18);
plaintext2 = malloc(18);
plaintext3 = malloc(18);
ciphertext1 = malloc(18);
ciphertext2 = malloc(18);
ciphertext3 = malloc(18);
readFile(plaintext1, argv[1]);
readFile(plaintext2, argv[2]);
readFile(plaintext3, argv[3]);
readFile(ciphertext1, argv[4]);
readFile(ciphertext2, argv[5]);
readFile(ciphertext3, argv[6]);
pthread_t t_id;
for(int i=0; i<256;i+=256/NUM_THREAD){
int *arg = malloc(sizeof(*arg));
if ( arg == NULL ) {
fprintf(stderr, "Couldn't allocate memory for thread arg.\n");
exit(EXIT_FAILURE);
}
*arg = i;
pthread_create(&t_id, NULL, attack, arg);
}
pthread_exit(NULL);
free(plaintext1);
free(plaintext2);
free(plaintext3);
free(ciphertext1);
free(ciphertext2);
free(ciphertext3);
} else {
printf("%s <p1> <p2> <p3> <c1> <c2> <c3>\n", argv[0]);
}
return 0;
}