forked from seann999/ssd_tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf_common.py
49 lines (35 loc) · 1.78 KB
/
tf_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
xi = tf.contrib.layers.xavier_initializer
xic = tf.contrib.layers.xavier_initializer_conv2d
def batch_norm(x, train_phase, decay=0.9, eps=1e-5):
shape = x.get_shape().as_list()
assert len(shape) in [2, 4]
n_out = shape[-1]
beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0))
gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.constant_initializer(1))
if len(shape) == 2:
batch_mean, batch_var = tf.nn.moments(x, [0])
else:
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2])
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(train_phase, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
return tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
def conv2d(name, x, maps_in, maps_out, train_phase, size=3, stride=1, act=tf.nn.relu):
with tf.variable_scope(name):
w = tf.get_variable(name="conv2d", shape=[size, size, maps_in, maps_out], initializer=xic())
c = tf.nn.conv2d(x, w, strides=[1, stride, stride, 1], padding='SAME')
#b = tf.get_variable(name="conv2d_b", shape=[maps_out], initializer=tf.constant_initializer(0))
bn = batch_norm(c, train_phase)
#bn = b + c
if act is not None:
return act(bn, name=name)
else:
return bn
def summary_float(step, name, value, summary_writer):
summary = tf.Summary(
value=[tf.Summary.Value(tag=name, simple_value=float(value))])
summary_writer.add_summary(summary, global_step=step)