forked from Junwu302/Urban_RNA_Virome
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig3_plot.R
177 lines (154 loc) · 7.3 KB
/
fig3_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
library(plyr)
library(ggplot2)
library(ggsci)
library(vegan)
library(reshape2)
library(pheatmap)
library(ggplotify)
load('../data/meta_info.RData')
load('../data/RCR95_Phylum.RData')
load('../data/RCR95_Abd.RData')
load('../data/geNomad_res.RData')
load('../phyla_cols.RData')
load('../data/env_cols.RData')
RCR95_Abd$Phylum[is.na(RCR95_Abd$Phylum) | !RCR95_Abd$Phylum %in% names(phyla_cols)] = 'Unclassified'
# Phylum level
Phylum_Abundance = ddply(RCR95_Abd[,-1], .variables = 'Phylum', .fun = function(df){
return(colSums(df[,-1]))
})
Phylum = Phylum_Abundance$Phylum
Phylum_Abundance = data.frame(t(Phylum_Abundance[,-1]))
colnames(Phylum_Abundance) = Phylum
Phylum_Abundance$Sample_id = gsub('^X','', gsub('\\.','-',rownames(Phylum_Abundance)))
Phylum_Abundance = merge(meta_info[,-c(3,7,8)],Phylum_Abundance, by = 'Sample_id')
## Diversity
Phylum_Shannon = data.frame('Sample_id'=Phylum_Abundance$Sample_id,
'Shannon_Index' = apply(Phylum_Abundance[,-c(1:5)], 1, diversity))
Phylum_Shannon = merge(meta_info, Phylum_Shannon)
RCR95_Shannon = data.frame('Sample_id'=gsub('^X','', gsub('\\.','-',colnames(RCR95_Abd)[-c(1:2)])),
'Shannon_Index' = apply(RCR95_Abd[,-c(1:2)], 2, diversity))
RCR95_Shannon = merge(meta_info, RCR95_Shannon)
# Figure 3A
envs = c('Station','Store','Bank','Hospital','Street',
'Soil','Grassland', 'Biofilm','Sediment','Freshwater',
'Greenhouse','Wastewater','Game animal')
df = RCR95_Shannon[RCR95_Shannon$Type %in% envs,]
df = merge(df, data.frame(table(df$Type)), by.x = 'Type', by.y = 'Var1')
df$Type = apply(df[,c('Type','Freq')], 1, function(x){
paste0(c(x[1],' (n=',trimws(as.character(x[2])),')'), collapse = '')
})
m = ddply(df, .variables = 'Type', function(x){median(x$Shannon_Index)})
df$Type = factor(df$Type, levels =m$Type[order(m$V1, decreasing = T)])
g = ggplot(data = df, mapping = aes(x = Type, y = Shannon_Index)) +
geom_boxplot(fill = '#75bde0', outlier.color = '#ff7500', outlier.size = .5) +
xlab('Environmental Type') + ylab('Shannon Index') +
theme_bw() + theme(axis.text.x = element_text(angle = 90,hjust = 1))
## Figure 3B
df = Phylum_Abundance[Phylum_Abundance$Type %in% envs,-c(1,2,3,5)]
df[,-1] = t(apply(df[,-1], 1, function(x){x/sum(x)}))
df = ddply(df[!is.nan(df[,2]),], .variables = 'Type', .fun = function(x){
colMeans(x[,-1])
})
df[,-1] = t(apply(df[,-1], 1, function(x){x/sum(x)}))
df = melt(df,id.vars = 1)
df$value = 100*df$value
df$variable = factor(df$variable, levels = names(phyla_cols))
m = df[df$variable == 'Unclassified',]
m = m[order(m$value),]
df$Type = factor(df$Type, levels = m$Type)
m = df[df$variable == 'Kitrinoviricota',]
df$Type = factor(df$Type, levels = m$Type[order(m$value)])
df$variable = factor(df$variable, levels = rev(names(phyla_cols)))
g = ggplot(df,aes(x=Type,y=value,fill=variable))+
geom_bar(stat = 'identity',position = 'stack')+
xlab('Environments') + ylab('Relative abundance (%)') +
labs (fill="Phyla")+ scale_fill_manual(values = phyla_cols) +
coord_flip() + theme_bw() + scale_y_continuous(position = 'right')+
theme(legend.position = 'bottom',
axis.text = element_text(color='black'))
topptx(g, '../Urban_RNA_Virus_Figs/Viral_Env_Composition.pptx', width = 8,height = 6)
# Figure 3C
load('../data/RCR95_NMDS.RData')
load('../data/RCR95_Anosim.RData')
envs = c('Station','Store','Bank','Hospital','Street',
'Soil','Grassland', 'Biofilm','Sediment','Freshwater',
'Greenhouse','Wastewater','Game animal')
df = data.frame(id = 1:length(RCR95_NMDS$species),
Sample_id = RCR95_NMDS$species, stringsAsFactors = F)
df = merge(df, meta_info[,c(1,4,5)])
RCR95_NMDS$stress
df_points = as.data.frame(RCR95_NMDS$points)
df_points$Sample_id = RCR95_NMDS$species
df_points = merge(df_points, meta_info[,c(1,4,5)])
df_points = df_points[df_points$Type %in% envs,]
m = data.frame(table(df_points$Type))
m = m[order(m$Freq, decreasing = T),]
df_points$Type = factor(df_points$Type, levels = m$Var1)
g = ggplot(data = df_points, mapping = aes(x = MDS1, y = MDS2, color = Type)) +
geom_point(size = 2) +
stat_ellipse(aes(fill=Type),geom="polygon",level=0.95,alpha=0.15)+
scale_fill_manual(values = env_cols[levels(df_points$Type)])+
scale_color_manual(values = env_cols[levels(df_points$Type)]) +
theme_bw()
# Figure 3D
load('../data/RCR95_PairwiseANOSIM.RData')
df = data.frame()
for(i in 1:length(RCR95_PairwiseANOSIM)){
pair = unlist(strsplit(names(RCR95_PairwiseANOSIM)[i],'_'))[-2]
R = RCR95_PairwiseANOSIM[[i]]$statistic
pval = RCR95_PairwiseANOSIM[[i]]$signif
df = rbind(df, data.frame(Env1 = pair[1], Env2=pair[2], R = R, pval = pval))
}
df$R[df$R<0] = 0
envs=unique(c(df$Env1, df$Env2))
mat = matrix(NA, nrow = length(envs), ncol = length(envs))
colnames(mat) = rownames(mat) = envs
for(i in 1:nrow(df)){
env1 = df$Env1[i]
env2 = df$Env2[i]
mat[env1, env2] = df$R[i]#as.numeric(df$pval[i] < 0.005)
mat[env2, env1] = df$R[i]#as.numeric(df$pval[i] < 0.005)
}
diag(mat) = 0
g= as.ggplot(pheatmap(mat,na_col='#DDDDDD',display_numbers = TRUE))
# Figure 3E
df = data.frame(Type = RCR95_Anosim$class.vec, Rank = RCR95_Anosim$dis.rank,
stringsAsFactors = F)
m = ddply(df, .variables = 'Type', function(x){median(x$Rank)})
m = m[order(m$V1, decreasing = T),]
df$Type = factor(df$Type, levels = m$Type)
g = ggplot(data = df, mapping = aes(x = Type, y = Rank, fill = Type)) +
geom_boxplot(outlier.color = 'gray', outlier.size = .5) +
scale_fill_manual(values = c(Between='#f0f0f4',env_cols[levels(df$Type)[-1]]))+
xlab('') + ylab('Anosim Distance Rank') +
theme_bw() + theme(axis.text.x = element_text(angle = 90,hjust = 1))
## Figure 3F
library(ggridges)
envs = c('Station','Store','Bank','Hospital','Street',
'Soil','Grassland', 'Biofilm','Sediment','Freshwater',
'Greenhouse','Wastewater','Game animal')
df = Phylum_Abundance[Phylum_Abundance$Type %in% envs,c('Type','urv.p.001','urv.p.002')]
ind = ddply(df, .variables = 'Type', .fun = function(x){
miss1 = sum(x$urv.p.001 ==0)/nrow(x)
miss2 = sum(x$urv.p.002 ==0)/nrow(x)
return(c(miss1, miss2))
})
ind = ind$Type[!(ind$V1 > 0.8 & ind$V2 > 0.8)]
df = df[df$Type %in% ind,]
pval_df = ddply(df, .variables = 'Type', .fun = function(x){
res = t.test(x[,2], x[3])
return(res$p.value)
})
df = melt(df)
g = ggplot(df, aes(x=log10(value+1e-5), y=Type, color=variable, point_color=variable, fill=variable)) +
geom_density_ridges(jittered_points=TRUE, scale = .95, rel_min_height = .01,
point_shape = "|", point_size = 3, size = 0.25,
position = position_points_jitter(height = 0))+
scale_y_discrete(expand = c(.01, 0), name = 'Environment') +
scale_x_continuous(expand = c(0, 0), name = "log10(FPKM + 1E-5)") +
scale_fill_manual(values = c("#D55E0050", "#0072B250"), labels = c("urv.p.001", "urv.p.002")) +
scale_color_manual(values = c("#D55E0050", "#0072B250"), guide = "none") +
scale_discrete_manual("point_color", values = c("#D55E0050", "#0072B250"), guide = "none") +
guides(fill = guide_legend(override.aes = list(fill = c("#D55E0050", "#0072B250"),
color = NA, point_color = NA)))+
theme_ridges(center = TRUE)