A script and runnable Docker image for plugging DeepCell Applications (like Mesmer
) into existing pipelines.
The run_app.py
script is used to read the input files from the user and process them with the selected Application.
An example Python script run_app.py
is provided as an example deepcell.applications
workflow.
The first required argument to the script is the Application name: python run_app.py APP_NAME
.
Each supported application has a variety of different configuration arguments.
Below is a table summarizing the currently supported applications and their arguments and any defaults.
For more information, use python run_app.py --help
or python run_app.py APP_NAME --help
.
To learn more about the pretrained models, see the introductory documentation.
Name | Description | Default Value |
---|---|---|
--output-directory |
Directory to save output file. | "./output" |
--output-name |
The name for the output file. | "mask.tif" |
--nuclear-image |
REQUIRED: The path to an image containing the nuclear marker(s). | "" |
--nuclear-channel |
The numerical index of the channel(s) from nuclear-image to select. If multiple values are passed, the channels will be summed. |
0 |
--membrane-image |
The path to an image containing the membrane marker(s). If not passed, an array of zeroes will be used instead. | "" |
--membrane-channel |
The numerical index of the channel(s) from membrane-image to select. If multiple values are passed, the channels will be summed. |
0 |
--compartment |
Predict nuclear or whole-cell segmentation. | "whole-cell" |
--image-mpp |
The resolution of the image in microns-per-pixel. A value of 0.5 corresponds to 20x zoom. | 0.5 |
--batch-size |
Number of images to predict on per batch. | 4 |
--squeeze |
Whether to np.squeeze the outputs before saving as a tiff. |
False |
export DATA_DIR=/Users/Will/vanvalenlab/example_data/multiplex
export APPLICATION=mesmer
export NUCLEAR_FILE=example_nuclear_image.tif
export MEMBRANE_FILE=example_membrane_image.tif
python run_app.py $APPLICATION \
--nuclear-image $DATA_DIR/$NUCLEAR_FILE \
--nuclear-channel 0 \
--membrane-image $DATA_DIR/$MEMBRANE_FILE \
--membrane-channel 0 1 \
--output-directory $DATA_DIR \
--output-name mask.tif \
--compartment whole-cell
The script can also be run as a Docker image for improved portability. This repository has published versions for both CPU and GPU for each versioned release.
The latest images for each are readily available:
vanvalenlab/deepcell-applications:latest
(CPU build)vanvalenlab/deepcell-applications:latest-gpu
(GPU build)
Or for better reproducibility, use a versioned release (e.g. vanvalenlab/deepcell-applications:0.1.0-gpu
)
For Docker API version >= 1.40:
export DATA_DIR=/path/to/data/dir
export MOUNT_DIR=/data
export APPLICATION=mesmer
export NUCLEAR_FILE=example_nuclear_image.tif
export MEMBRANE_FILE=example_membrane_image.tif
docker run -it --gpus 1 \
-v $DATA_DIR:$MOUNT_DIR \
vanvalenlab/deepcell-applications:latest-gpu \
$APPLICATION \
--nuclear-image $MOUNT_DIR/$NUCLEAR_FILE \
--membrane-image $MOUNT_DIR/$MEMBRANE_FILE \
--output-directory $MOUNT_DIR \
--output-name mask.tif \
--compartment whole-cell
For Docker API version < 1.40:
export DATA_DIR=/path/to/data/dir
export MOUNT_DIR=/data
export APPLICATION=mesmer
export NUCLEAR_FILE=example_nuclear_image.tif
export MEMBRANE_FILE=example_membrane_image.tif
docker run -it \
-v $DATA_DIR:$MOUNT_DIR \
vanvalenlab/deepcell-applications:latest-gpu \
$APPLICATION \
--nuclear-image $MOUNT_DIR/$NUCLEAR_FILE \
--membrane-image $MOUNT_DIR/$MEMBRANE_FILE \
--output-directory $MOUNT_DIR \
--output-name mask.tif \
--compartment whole-cell
It is also very easy to build a custom image to test any new functionality:
docker build -t vanvalenlab/deepcell-applications .
It is also possible to change the base DeepCell version when building the image, using the build-arg DEEPCELL_VERSION
.
This makes it simple to build a CPU-only version of the image or to build a new version of deepcell-tf
.
# the -gpu tag is required to enable GPU compatibility when overriding versions
docker build --build-arg DEEPCELL_VERSION=0.9.0-gpu -t vanvalenlab/deepcell-applications .
- Add
imagecodecs
for compatibility with LZW-compressed images - Update
deepcell
requirement to0.12.4
- Update
deepcell-tf
base to0.12.4
- Update
deepcell
requirement to0.12.5
- merge upstream