-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathRedBallTracker.py
63 lines (44 loc) · 3.78 KB
/
RedBallTracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# RedBallTracker.py
import cv2
import numpy as np
import os
###################################################################################################
def main():
capWebcam = cv2.VideoCapture(0) # declare a VideoCapture object and associate to webcam, 0 => use 1st webcam
if capWebcam.isOpened() == False: # check if VideoCapture object was associated to webcam successfully
print "error: capWebcam not accessed successfully\n\n" # if not, print error message to std out
os.system("pause") # pause until user presses a key so user can see error message
return # and exit function (which exits program)
while cv2.waitKey(1) != 27 and capWebcam.isOpened(): # until the Esc key is pressed or webcam connection is lost
blnFrameReadSuccessfully, imgOriginal = capWebcam.read() # read next frame
if not blnFrameReadSuccessfully or imgOriginal is None: # if frame was not read successfully
print "error: frame not read from webcam\n" # print error message to std out
os.system("pause") # pause until user presses a key so user can see error message
break # exit while loop (which exits program)
imgHSV = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV)
imgThreshLow = cv2.inRange(imgHSV, (0, 155, 155), (18, 255, 255))
imgThreshHigh = cv2.inRange(imgHSV, (165, 155, 155), (179, 255, 255))
imgThresh = cv2.add(imgThreshLow, imgThreshHigh)
imgThresh = cv2.GaussianBlur(imgThresh, (3, 3), 2) # blur
imgThresh = cv2.dilate(imgThresh, np.ones((5,5),np.uint8)) # close image (dilate, then erode)
imgThresh = cv2.erode(imgThresh, np.ones((5,5),np.uint8)) # closing "closes" (i.e. fills in) foreground gaps
intRows, intColumns = imgThresh.shape # break out number of rows and columns in the image, rows is used for minimum distance between circles in call to Hough Circles
circles = cv2.HoughCircles(imgThresh, cv2.HOUGH_GRADIENT, 2, intRows / 4) # fill variable circles with all circles in the processed image
if circles is not None: # this line is necessary to keep program from crashing on next line if no circles were found
for circle in circles[0]: # for each circle
x, y, radius = circle # break out x, y, and radius
print "ball position x = " + str(x) + ", y = " + str(y) + ", radius = " + str(radius) # print ball position and radius
cv2.circle(imgOriginal, (x, y), 3, (0, 255, 0), cv2.FILLED) # draw small green circle at center of detected object
cv2.circle(imgOriginal, (x, y), radius, (0, 0, 255), 3) # draw red circle around the detected object
# end for
# end if
cv2.namedWindow("imgOriginal", cv2.WINDOW_AUTOSIZE) # create windows, use WINDOW_AUTOSIZE for a fixed window size
cv2.namedWindow("imgThresh", cv2.WINDOW_AUTOSIZE) # or use WINDOW_NORMAL to allow window resizing
cv2.imshow("imgOriginal", imgOriginal) # show windows
cv2.imshow("imgThresh", imgThresh)
# end while
cv2.destroyAllWindows() # remove windows from memory
return
###################################################################################################
if __name__ == "__main__":
main()