-
Notifications
You must be signed in to change notification settings - Fork 20
/
blstm_model.py
executable file
·1125 lines (957 loc) · 63.4 KB
/
blstm_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding: utf-8
from datetime import datetime
import glob
import pickle
import json
import keras
from keras.models import Sequential
from keras.layers import LSTM, Dense, Conv1D, TimeDistributed, Flatten, Activation, Dropout, Bidirectional
from keras.layers.pooling import MaxPooling1D
from keras.callbacks import History, TensorBoard, Callback
import keras.initializers as KI
from keras.layers import BatchNormalization
from keras import backend as K
import numpy as np
import os
from argparse import ArgumentParser
import math
from copy import deepcopy
import itertools
import warnings
from sp_tool import util as sp_util
from sp_tool.arff_helper import ArffHelper
from sp_tool.evaluate import CORRESPONDENCE_TO_HAND_LABELLING_VALUES
from sp_tool import recording_processor as sp_processor
# If need to set a limit on how much GPU memory the model is allowed to use
# import tensorflow as tf
# from keras.backend.tensorflow_backend import set_session
# config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.5
# config.gpu_options.visible_device_list = "0"
# set_session(tf.Session(config=config))
def zip_equal(*args):
"""
Iterate the zip-ed combination of @args, making sure they have the same length
:param args: iterables to zip
:return: yields what a usual zip would
"""
fallback = object()
for combination in itertools.zip_longest(*args, fillvalue=fallback):
if any((c is fallback for c in combination)):
raise ValueError('zip_equals arguments have different length')
yield combination
def categorical_f1_score_for_class(y_true, y_pred, class_i, dtype=None):
"""
A generic function for computing sample-level F1 score for a class @class_i (i.e. for the classification problem
"is @class_i" vs "is not @class_i").
:param y_true: one-hot encoded true labels for a set of samples
:param y_pred: predicted probabilities for all classes for the same set of samples
:param class_i: which class to consider for the F1 score computation
:param dtype: an optional intermediate data type parameter; unless some relevant exception is raised (type mismatch,
for example), no need to pass anything; in some cases 'float64' had to be passed, instead of the
default 'float32'
:return: one floating-point value, the F1 score for the binary @class_i vs not-@class_i problem
"""
pred_labels = K.argmax(y_pred, axis=-1)
tp = K.sum(y_true[:, :, class_i] * K.cast(K.equal(pred_labels, class_i), 'float32' if not dtype else dtype))
all_p_detections = K.sum(K.cast(K.equal(pred_labels, class_i), 'float32' if not dtype else dtype))
all_p_true = K.sum(y_true[:, :, class_i])
precision = tp / (all_p_detections + K.epsilon())
recall = tp / (all_p_true + K.epsilon())
f_score = 2 * precision * recall / (precision + recall + K.epsilon())
return f_score
# A set of F1-score functions for the three major eye movement types that we use to monitor model training on both
# the training and the validation set. Almost the same signature as the "master"
# function categorical_f1_score_for_class() above.
def f1_FIX(y_true, y_pred, dtype=None):
return categorical_f1_score_for_class(y_true, y_pred, 1, dtype)
def f1_SACC(y_true, y_pred, dtype=None):
return categorical_f1_score_for_class(y_true, y_pred, 2, dtype)
def f1_SP(y_true, y_pred, dtype=None):
return categorical_f1_score_for_class(y_true, y_pred, 3, dtype)
def create_model(num_classes, batch_size, train_data_shape, dropout_rate=0.3,
padding_mode='valid',
num_conv_layers=3, conv_filter_counts=(32, 16, 8),
num_dense_layers=1, dense_units_count=(32,),
num_blstm_layers=1, blstm_unit_counts=(16,),
unroll_blstm=False,
stateful=False,
no_bidirectional=True):
"""
Create a 1D CNN-BLSTM model that contains 3 blocks of layers: Conv1D block, Dense block, and BLSTM block.
Each of these is configurable via the parameters of this function; only the convolutional block cannot be entirely
skipped.
Each layer in the Conv1D block has the filter size of 3, and is followed by BatchNormalization and ReLU activation.
Every layer in this block, starting from the second one, is preceded by Dropout.
In the Dense block, every layer uses a TimeDistributed wrapper and is preceded by Dropout, followed by ReLU
activation.
All [B]LSTM layer(s) use tanh activation.
After the BLSTM block, the model contains a single (time-distributed) Dense layer with softmax activation that
has the @num_classes units.
:param num_classes: number of classes to be classified
:param batch_size: batch size
:param train_data_shape: shape of the training data array (will infer sequence length -- @train_data_shape[1] -- and
number of features -- train_data_shape[2] -- here, @train_data_shape[0] is ignored, and
@batch_size is used instead).
:param dropout_rate: each convolutional (except for the first one) and dense layer is preceded by Dropout with this
rate.
:param padding_mode: convolution padding mode; can be 'valid' (default), 'same', or 'causal'; the latter can be
useful, if a modification into a realtime-like model is desired:
https://keras.io/layers/convolutional/#conv1d
:param num_conv_layers: number of convolutional layers in the Conv1D block
:param conv_filter_counts: number of filters in each respective Conv1D layer; has to be of length of at least
@num_conv_layers - will use the first @num_conv_layers elements
:param num_dense_layers: number of dense layers in the Dense block
:param dense_units_count: number of units in each respective Dense layer; has to be of length of at least
@num_dense_layers - will use the first @num_dense_layers elements
:param num_blstm_layers: number of dense layers in the BLSTM block
:param blstm_unit_counts: number of units in each respective [B]LSTM layer; has to be of length of at least
@num_blstm_layers - will use the first @num_blstm_layers elements
:param unroll_blstm: whether to unroll the [B]LSTM(s), see https://keras.io/layers/recurrent/#lstm
:param stateful: whether to make the [B]LSTM(s) stateful; not used yet
:param no_bidirectional: if True, will use traditional LSTMs, not the Bidirectional wrapper,
see https://keras.io/layers/wrappers/#bidirectional
:return: a keras.models.Sequential() model
"""
assert num_conv_layers <= len(conv_filter_counts)
if len(conv_filter_counts) != num_conv_layers:
warnings.warn('@num_conv_layers={} is shorter than @conv_filter_counts={}, so the last {} elements of the '
'latter will be ignored. Might be incorrectly passed arguments!'.format(
num_conv_layers, conv_filter_counts, len(conv_filter_counts) - num_conv_layers))
assert num_dense_layers <= len(dense_units_count)
if len(dense_units_count) != num_dense_layers:
warnings.warn('@num_dense_layers={} is shorter than @dense_unit_counts={}, so the last {} elements of the '
'latter will be ignored. Might be incorrectly passed arguments!'.format(
num_dense_layers, dense_units_count, len(dense_units_count) - num_dense_layers))
assert num_blstm_layers <= len(blstm_unit_counts)
if len(blstm_unit_counts) != num_blstm_layers:
warnings.warn('@num_blstm_layers={} is shorter than @blstm_unit_counts={}, so the last {} elements of the '
'latter will be ignored. Might be incorrectly passed arguments!'.format(
num_conv_layers, conv_filter_counts, len(blstm_unit_counts) - num_blstm_layers))
model = Sequential()
for conv_layer_id in range(num_conv_layers):
if conv_layer_id != 0:
model.add(Dropout(dropout_rate))
conv_layer_args = {
'filters': conv_filter_counts[conv_layer_id],
'kernel_size': 3,
'padding': padding_mode,
'kernel_initializer': KI.RandomNormal(),
'bias_initializer': KI.Ones()
}
# special args for the first layer
if conv_layer_id == 0:
conv_layer_args['batch_input_shape'] = (batch_size, train_data_shape[1], train_data_shape[2])
model.add(Conv1D(**conv_layer_args))
model.add(BatchNormalization(axis=-1))
model.add(Activation('relu'))
model.add(TimeDistributed(Flatten()))
for dense_layer_id in range(num_dense_layers):
model.add(Dropout(dropout_rate))
model.add(TimeDistributed(Dense(dense_units_count[dense_layer_id], activation='relu',
kernel_initializer=KI.RandomNormal(),
bias_initializer=KI.Ones())))
for blstm_layer_id in range(num_blstm_layers):
if not no_bidirectional:
model.add(Bidirectional(LSTM(blstm_unit_counts[blstm_layer_id],
return_sequences=True, stateful=stateful,
unroll=unroll_blstm)))
else:
model.add(LSTM(blstm_unit_counts[blstm_layer_id],
return_sequences=True, stateful=stateful,
unroll=unroll_blstm))
model.add(TimeDistributed(Dense(num_classes, activation='softmax',
kernel_initializer=KI.RandomNormal(),
bias_initializer=KI.Ones())))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop', metrics=['accuracy',
f1_SP,
f1_FIX,
f1_SACC])
model.summary()
return model
def extract_windows(X, y, window_length,
padding_features=0,
downsample=1, temporal_padding=False):
"""
Extract fixed-sized (@window_length) windows from arbitrary-length sequences (in X and y),
padding them, if necessary (mirror-padding is used).
:param X: input data; list of arrays, each shaped like (NUM_SAMPLES, NUM_FEATURES);
each list item corresponds to one eye tracking recording (one observer & one stimulus clip)
:param y: corresponding labels; list of arrays, each shaped like (NUM_SAMPLES,);
each list element corresponds to sample-level eye movement class labels in the respective sequence;
list elements in X and y are assumed to be matching.
:param window_length: the length of resulting windows; this is the input "context size" in the paper, in samples.
:param padding_features: how many extra samples to take in the feature (X) space on each side
(resulting X will have sequence length longer than resulting Y, by 2 * padding_features,
while Y will have sample length of @window_length);
this is necessary due to the use of valid padding in convolution operations in the model;
if all convolutions are of size 3, and if they all use valid padding, @padding_features
should be set to the number of convolution layers.
:param downsample: take each @downsample'th window; if equal to @window_length, no overlap between windows;
by default, all possible windows with the shift of 1 sample between them will be created,
resulting in NUM_SAMPLES-1 overlap; if overlap of K samples is desired, should set
@downsample=(NUM_SAMPLES-K)
:param temporal_padding: whether to pad the entire sequences, so that the first window is centered around the
first sample of the real sequence (i.e. the sequence of recorded eye tracking samples);
not used
:return: two lists of numpy arrays:
(1) a list of windows corresponding to input data (features),
(2) a list of windows corresponding to labels we will predict.
These can be used as input to network training procedures, for example.
"""
res_X = []
res_Y = []
# iterate through each file in this subset of videos
for x_item, y_item in zip_equal(X, y):
# pad for all windows
padding_size_x = padding_features
padding_size_y = 0
if temporal_padding:
padding_size_x += window_length // 2
padding_size_y += window_length // 2
padded_x = np.pad(x_item, ((padding_size_x, padding_size_x), (0, 0)), 'reflect')
padded_y = np.pad(y_item, ((padding_size_y, padding_size_y), (0, 0)), 'reflect')
#
# Extract all valid windows in @padded_x, with given downsampling and size.
# @res_X will have windows of size @window_length + 2*@padding_features
window_length_x = window_length + 2 * padding_features
res_X += [padded_x[i:i + window_length_x, :] for i in
range(0, padded_x.shape[0] - window_length_x + 1, downsample)]
# @res_Y will have windows of size @window_length, central to the ones in @res_X
res_Y += [padded_y[i:i + window_length, :] for i in
range(0, padded_y.shape[0] - window_length + 1, downsample)]
return res_X, res_Y
def evaluate_test(model, X, y=None,
keys_to_subtract_start_indices=(),
correct_for_unknown_class=True,
padding_features=0,
temporal_padding=False,
split_by_items=False):
"""
Predict (with a trained @model) labels for full sequences in @X and compare those to @y. The function returns both
the predicted and true labels ("raw" results), and the results of several metrics
(accuracy, sample-level F1 scores for classes fixation, saccade, pursuit, and noise) - "aggregated" results.
If @y is not provided, only the predicted per-class probabilities are returned
The context window width for prediction will be inferred from the @model.
If predicting on data without labels, set @correct_for_unknown_class to False (see below)! If @y is not passed, it
will not be used either way, but if a "fake" @y is provided (e.g. filled with UNKNOWN labels), make sure to change
this option.
:param model: a trained deep model (has to have a .predict_proba() method)
:param X: input data; list of arrays, each shaped like (NUM_SAMPLES, NUM_FEATURES);
each list item corresponds to one eye tracking recording (one observer & one stimulus clip)
:param y: corresponding labels; needed only to evaluate the model predictions;
the list of arrays, each shaped like (NUM_SAMPLES,);
each list element corresponds to sample-level eye movement class labels in the respective sequence;
list elements in X and y are assumed to be matching.
:param keys_to_subtract_start_indices: indices of the keys, the starting value of which should be subtracted from
all samples (inside of each window that is passed to the model)
:param correct_for_unknown_class: if True, will assign "correct" probabilities (1 for class 0, 0 for other classes)
to the samples that have an UNKNOWN label, since we don't want them influencing
the evaluation scores.
:param padding_features: how many extra samples to take in the feature (X) space on each side
(resulting X will have sequence length longer than resulting Y, by 2 * padding_features,
while Y will have sample length of @window_length);
this is necessary due to the use of valid padding in convolution operations in the model;
if all convolutions are of size 3, and if they all use valid padding, @padding_features
should be set to the number of convolution layers.
:param temporal_padding: whether to pad the entire sequences, so that the first window is centered around the
first sample of the real sequence (i.e. the sequence of recorded eye tracking samples);
False by default
:param split_by_items: whether to split "raw" results by individual sequences in @X and @y
(necessary when want to create output .arff files that match all input .arff files)
:return: two dictionaries:
(1) "raw_results", with keys "pred" (per-class probabilities predicted by the network, for every
sample in @X) and "true" (one-hot encoded class labels, for every sample in @X -- taken from @y,
if @y was provided).
If @split_by_items is set to True, these will be lists of numpy arrays that correspond to
*sequences* (not samples!) in @X. Otherwise, these are themselves numpy arrays.
(2) "results", with keys "accuracy", "F1-FIX", "F1-SACC", "F1-SP", and "F1-NOISE" (if @y is provided)
"""
res_Y = [] if y is not None else None
res_X = []
if y is None:
# if no true labels are provided, fake the sequence
y = [None] * len(X)
window_length = model.output_shape[1] # output_shape is (batch_size, NUM_SAMPLES, NUM_CLASSES)
downsample = window_length # no overlap here
# Keep track of where each individual recording (1 observer, 1 stimulus clip) starts and ends -- will need this
# to produce final automatically labelled .arff files
items_start = []
items_end = []
for x_item, y_item in zip_equal(X, y):
items_start.append(len(res_X))
# how much padding is needed additionally, for full-window size
target_length = int(math.ceil(x_item.shape[0] / float(window_length)) * window_length)
padding_size_x = [0, target_length - x_item.shape[0]]
padding_size_y = [0, target_length - y_item.shape[0]] if y_item is not None else [0, 0]
# pad features (@x_item) for all windows
padding_size_x = [elem + padding_features for elem in padding_size_x]
# no @y_item-padding required
if temporal_padding:
padding_size_x = [elem + window_length // 2 for elem in padding_size_x]
padding_size_y = [elem + window_length // 2 for elem in padding_size_y]
padded_x = np.pad(x_item, (padding_size_x, (0, 0)), 'reflect') # x is padded with reflections to limit artifacts
if y_item is not None:
padded_y = np.pad(y_item, (padding_size_y, (0, 0)), 'constant') # y is zero-padded to ignore those labels
# set to UNKNOWN class
has_no_label_mask = padded_y.sum(axis=1) == 0
padded_y[has_no_label_mask, 0] = 1
#
# Extract all valid windows in @padded_x, with given downsampling and size.
# @res_X will have windows of size @window_length + 2*@padding_features
window_length_x = window_length + 2 * padding_features
res_X += [padded_x[i:i + window_length_x, :] for i in
range(0, padded_x.shape[0] - window_length_x + 1, downsample)]
if y_item is not None:
# @res_Y will have windows of size @window_length, central to the ones in @res_X
res_Y += [padded_y[i:i + window_length, :] for i in
range(0, padded_y.shape[0] - window_length + 1, downsample)]
items_end.append(len(res_X))
res_X = np.array(res_X)
if res_Y is not None:
res_Y = np.array(res_Y)
# Subtract the first value of each feature (for which it is necessary) inside each window
for col_ind in keys_to_subtract_start_indices:
res_X[:, :, col_ind] -= res_X[:, 0, col_ind].reshape(-1, 1)
# augment to fit batch size
batch_size = model.get_config()['layers'][0]['config']['batch_input_shape'][0]
original_len = res_X.shape[0]
target_len = int(np.ceil(float(original_len) / batch_size)) * batch_size
res_X = np.pad(res_X,
pad_width=((0, target_len - res_X.shape[0]), (0, 0), (0, 0)),
mode='constant')
# take only the needed predictions
res_proba = model.predict(res_X, batch_size=batch_size)[:original_len]
results = {}
# The unknown labels in @res_Y should play no role, set respective probabilities in @res_proba:
# If @y was provided, set "correct" probabilities for the UNKNOWN class, since we cannot properly evaluate against
# an undefined label
if correct_for_unknown_class and res_Y is not None:
unknown_class_mask = res_Y[:, :, 0] == 1
res_proba[unknown_class_mask] = 0.0
res_proba[unknown_class_mask, 0] = 1.0
res = np.argmax(res_proba, axis=-1)
raw_results = {'true': res_Y, 'pred': res_proba}
# cannot evaluate unless the labels @y were provided
if res_Y is not None:
results['accuracy'] = (np.mean(res[np.logical_not(unknown_class_mask)] ==
np.argmax(res_Y[np.logical_not(unknown_class_mask)], axis=-1)))
for stat_i, stat_name in zip(list(range(1, 5)), ['FIX', 'SACC', 'SP', 'NOISE']):
results['F1-{}'.format(stat_name)] = K.eval(categorical_f1_score_for_class(res_Y, res_proba, stat_i,
'float64'))
if split_by_items:
# split into individual sequences
split_res_true = [] if res_Y is not None else None
split_res_pred = []
for individual_start, individual_end in zip_equal(items_start, items_end):
if res_Y is not None:
split_res_true.append(raw_results['true'][individual_start:individual_end])
split_res_pred.append(raw_results['pred'][individual_start:individual_end])
raw_results = {'true': split_res_true, 'pred': split_res_pred}
return raw_results, results
def get_architecture_descriptor(args):
"""
Generate the descriptor of the model
:param args: command line arguments
:return: descriptor string
"""
# (convert lists to tuples to avoid [] in the descriptor, which later confuse glob.glob())
return '{numC}x{padC}C@{unitsC}_{numD}xD@{unitsD}_{numB}x{typeB}@{unitsB}'.format(
numC=args.num_conv, padC=args.conv_padding_mode[0], unitsC=tuple(args.conv_units)[:args.num_conv],
numD=args.num_dense, unitsD=tuple(args.dense_units)[:args.num_dense],
numB=args.num_blstm, typeB=('B' if not args.no_bidirectional else 'L'),
unitsB=tuple(args.blstm_units)[:args.num_blstm])
def get_feature_descriptor(args):
"""
Generate the descriptor of the feature set that is used
:param args: command line arguments
:return: descriptor string
"""
feature_postfix = []
features_to_name = args.features[:] # copy list
naming_priority = ['movement', 'speed', 'acc', 'direction']
naming_priority += sorted(set(args.features).difference(naming_priority)) # add the rest in alphabetical order
for n in naming_priority:
if n == 'movement':
# to add "movement" to the descriptor, check that all 3 parts of these features are present
if 'speed' in features_to_name and \
'acc' in features_to_name and \
'direction' in features_to_name:
feature_postfix.append('movement')
features_to_name.remove('speed')
features_to_name.remove('acc')
features_to_name.remove('direction')
else:
continue
if n in features_to_name:
feature_postfix.append(n)
features_to_name.remove(n)
feature_postfix = '_'.join(feature_postfix)
# if we want to limit the number of temporal scales of the features, mark it in the signature
if args.num_feature_scales < 5:
feature_postfix += '_{}_temp_scales'.format(args.num_feature_scales)
return feature_postfix
def get_full_model_descriptor(args):
"""
Get a full descriptor of the model, which includes the architecture descriptor, feature descriptor, and info
about context window size and overlap.
:param args:
:return:
"""
return '{mdl}_{feat}_WINDOW_{win}{overlap}/'.format(mdl=get_architecture_descriptor(args),
feat=get_feature_descriptor(args),
win=args.window_size,
overlap='_overlap_{}'.format(args.overlap)
if args.overlap > 0 else '')
def get_arff_attributes_to_keep(args):
keys_to_keep = []
if 'xy' in args.features:
keys_to_keep += ['x', 'y']
if 'speed' in args.features:
keys_to_keep += ['speed_{}'.format(i) for i in (1, 2, 4, 8, 16)[:args.num_feature_scales]]
if 'direction' in args.features:
keys_to_keep += ['direction_{}'.format(i) for i in (1, 2, 4, 8, 16)[:args.num_feature_scales]]
if 'acc' in args.features:
keys_to_keep += ['acceleration_{}'.format(i) for i in (1, 2, 4, 8, 16)[:args.num_feature_scales]]
return keys_to_keep
def run(args):
"""
Run model training/testing, depending on @args. See description of parse_args() for more information!
:param args: terminal arguments to the program. See parse_args() help, or run with --help.
:return: if args.dry_run is set to True, returns a model (created or loaded)
"""
# For every numeric label we will need a categorical (human-readable) value to easier interpret results.
CORRESPONDENCE_TO_HAND_LABELLING_VALUES_REVERSE = {v: k for k, v in
CORRESPONDENCE_TO_HAND_LABELLING_VALUES.items()}
print(CORRESPONDENCE_TO_HAND_LABELLING_VALUES_REVERSE)
num_classes = 5 # 0 = UNKNOWN, 1 = FIX, 2 = SP, 3 = SACC, 4 = NOISE
# Paths, where to store models and generated outputs (.arff files with sample-level labels).
# These are just the "root" folders for this data, subfolders will be automatically created
# for each model configuration.
#
# Now these are stored locally, but if distributed training is desired, make sure that especially MODELS_DIR
# points to a shared location that is accessible for reading and writing to all training nodes!
# Pass the appropriate --model-root-path argument!
MODELS_DIR = 'data/models/' if args.model_root_path is None else args.model_root_path
OUT_DIR = 'data/outputs/'
# by default, do training; --final-run will initiate testing mode
TRAINING_MODE = True
if args.final_run:
TRAINING_MODE = False
# NB: Some training parameters are set for the GazeCom data set! If you wish to *train* this model on
# another data set, you will need to adjust these:
# - CLEAN_TIME_LIMIT -- during training, all samples (for all clips) with a timestamp exceeding this threshold
# will be disregarded. Set LOAD_CLEAN_DATA to False instead of "=TRAINING_MODE", if this is
# not desired.
# - certain .arff column names ("handlabeller_final" for the ground truth labels, feature names - e.g. "speed_1")
# would have to be adjusted, if respective data is located in other columns
# - keys_to_subtract_start -- if you add more features that need to be zeroed in the beginning of each window
# that is given to the network, you need to add them to this set; by default, only
# features "x" and "y" are treated this way.
# - num_classes above, if more classes are labelled in the data set (5 by default, 0 = UNKNOWN, the rest are
# actual labels (1 = FIXATION, 2 = SACCADE, 3 = SMOOTH PURSUIT, 4 = NOISE);
# also, CORRESPONDENCE_TO_HAND_LABELLING_VALUES_REVERSE will have to be updated then!
# - time_scale -- in GazeCom, time is given in microseconds, so it has to be multiplied by 1e-6 to convert to
# seconds; either convert your data set's time to microseconds as well, or change the @time_scale
# If you only want to test a pre-trained model on a new data set, you have to convert the data set to .arff file
# format with the fields 'time', 'x', 'y', and maybe 'handlabeller_final', if manual annotations are available.
# These fields will be preserved in final outputs. Also you have to provide fields that correspond to all features
# that the model utilises (e.g. for speed and direction, feature names are speed_1, speed_2, speed_4, speed_8,
# and speed_16 (speed in degrees of visual angle per second, extracted at corresponding scales, in samples),
# same for direction (in radians relative to the horizontal vector from left to right). See the `feature_extraction`
# folder and its scripts for implementation details, as well as the corresponding paper.
CLEAN_TIME_LIMIT = 21 * 1e6 # in microseconds; 21 seconds
# During training, some data purification is performed ("clean" data is loaded):
# - samples after CLEAN_TIME_LIMIT microseconds are ignored
# - files SSK_*.arff are re-sampled by taking every second gaze sample
# (in GazeCom, these contain 500Hz recordings, compared to 250Hz of the rest of the data set)
# Set LOAD_CLEAN_DATA to False, if this is not desired.
LOAD_CLEAN_DATA = TRAINING_MODE
if LOAD_CLEAN_DATA:
print('Loading clean data')
else:
print('Loading raw data')
print('Feature description:', get_feature_descriptor(args))
print('Architecture description:', get_architecture_descriptor(args))
# Where to find feature files. "{}" in the template is where a clip name will be inserted.
# The "root" folder is by default 'data/inputs/GazeCom_all_features'
files_template = args.feature_files_folder + '/{}/*.arff'
# When extracting window of fixed size with fixed overlap, this formula defines the downsampling factor
# (i.e. will take every @downsample'th window of @args.window_size in length, which will result in overlap of
# exactly @args.overlap samples between subsequent windows)
downsample = args.window_size - args.overlap
# All convolutions are of size 3, so each Conv1D layer (with valid padding) requires 1 sample padded on each side.
padding_features = args.num_conv if args.conv_padding_mode == 'valid' else 0
# Set paths to model files and output files' directory, which include model parameters,
# such as feature signatures, window size, overlap size.
MODEL_PATH = '{dir}/LOO_{descr}/'.format(dir=MODELS_DIR,
descr=get_full_model_descriptor(args))
OUT_PATH = '{dir}/output_LOO_{descr}/'.format(dir=OUT_DIR,
descr=get_full_model_descriptor(args))
# The record .model_name in @args overrides the MODEL_PATH set above.
if args.model_name is not None:
MODEL_PATH = '{}/{}/'.format(MODELS_DIR, args.model_name)
print('Selected model path:', MODEL_PATH)
if not args.dry_run:
if not os.path.exists(MODEL_PATH):
os.mkdir(MODEL_PATH)
# Load all pre-computed video parameters just to get video names (for cross-video validation, LOVO)
# Only need the 'video_names' key in the dictionary in this json file (in case it needs to be adjusted for a
# different data set).
gc = json.load(open('data/inputs/GazeCom_video_parameters.json'))
all_video_names = gc['video_names']
# To clear the used memory, we will normally run this script as many times as there are different clips in GazeCom.
# Not to load and pre-process raw input sequences this often, we dump them as an .h5 file, or load it, if it
# already exists.
raw_data_set_fname = 'data/cached/GazeCom_data_{feat}{is_clean}.h5'.format(feat=get_feature_descriptor(args),
is_clean='' if LOAD_CLEAN_DATA
else '_not_clean')
# During a final run, we want to create output files that have fewer fields: just the ones describing the raw data
# (no features) and the ground truth label.
if args.final_run:
source_fnames = []
source_objs = []
source_keys_to_keep = ['time', 'x', 'y', 'confidence', 'handlabeller_final']
# Depending on the command line arguments, certain keys are used as features (@keys_to_keep here)
keys_to_keep = get_arff_attributes_to_keep(args)
print('Using the following features:', keys_to_keep)
data_X = []
data_Y = []
data_Y_one_hot = []
# If no file with pre-processed features and labels exists yet, create it.
if not os.path.exists(raw_data_set_fname):
if not os.path.exists(os.path.split(raw_data_set_fname)[0]):
os.makedirs(os.path.split(raw_data_set_fname)[0])
# Will convert to degrees the following keys: x, y, and all speed and acceleration features.
keys_to_convert_to_degrees = ['x', 'y'] + [k for k in keys_to_keep if 'speed_' in k or 'acceleration_' in k]
keys_to_convert_to_degrees = sorted(set(keys_to_convert_to_degrees).intersection(keys_to_keep))
# Conversion is carried out by dividing by pixels-per-degree value (PPD)
print('Will divide by PPD the following keys', keys_to_convert_to_degrees)
time_scale = 1e-6 # time is originally in microseconds; scale to seconds
total_files = 0
for video_name in gc['video_names']:
print('For {} using files from {}'.format(video_name, files_template.format(video_name)))
fnames = sorted(glob.glob(files_template.format(video_name)))
total_files += len(fnames)
data_X.append([])
data_Y.append([])
data_Y_one_hot.append([])
if args.final_run:
source_fnames.append(list(fnames))
source_objs.append([])
for f in fnames:
o = ArffHelper.load(open(f))
if LOAD_CLEAN_DATA and 'SSK_' in f:
# the one observer with 500HZ instead of 250Hz
o['data'] = o['data'][::2]
if LOAD_CLEAN_DATA:
o['data'] = o['data'][o['data']['time'] <= CLEAN_TIME_LIMIT]
if args.final_run: # make a copy of the data before any further modifications! record to @source_objs
source_obj = deepcopy(o)
# only the essential keys in array
source_obj['data'] = source_obj['data'][source_keys_to_keep]
# in attributes too
attribute_names = [n for n, _ in source_obj['attributes']]
source_obj['attributes'] = [source_obj['attributes'][attribute_names.index(attr)]
for attr in source_keys_to_keep]
source_objs[-1].append(source_obj)
# normalize coordinates in @o by dividing by @ppd_f -- the pixels-per-degree value of this file @f
ppd_f = sp_util.calculate_ppd(o)
for k in keys_to_convert_to_degrees:
o['data'][k] /= ppd_f
# add to respective data sets (only the features to be used and the true labels)
data_X[-1].append(np.hstack([np.reshape(o['data'][key], (-1, 1)) for key in keys_to_keep]).astype(np.float64))
assert data_X[-1][-1].dtype == np.float64
if 'time' in keys_to_keep:
data_X[-1][-1][:, keys_to_keep.index('time')] *= time_scale
data_Y[-1].append(o['data']['handlabeller_final']) # "true" labels
data_Y_one_hot[-1].append(np.eye(num_classes)[data_Y[-1][-1]]) # convert numeric labels to one-hot form
if total_files > 0:
print('Loaded a total of {} files'.format(total_files))
else:
raise ValueError('No input files found! Check that the directory "{}" exists '
'and is accessible for reading, or provide a different value for the '
'--feature-files-folder argument. Make sure you extracted the respective archive, '
'if the data was provided in this way. This folder must contain '
'18 subfolders with names corresponding to '
'GazeCom clip names.'.format(args.feature_files_folder))
# As mentioned above, preserve the pre-processed data to not re-do this again, at least on the same system.
# This creates files that are dependent of the features that are preserved and whether @LOAD_CLEAN_DATA is set.
if not args.final_run:
pickle.dump({'data_X': data_X, 'data_Y': data_Y, 'data_Y_one_hot': data_Y_one_hot},
open(raw_data_set_fname, 'w'))
else:
pickle.dump({'data_X': data_X, 'data_Y': data_Y, 'data_Y_one_hot': data_Y_one_hot,
'source_fnames': source_fnames, 'source_objs': source_objs},
open(raw_data_set_fname, 'w'))
print('Written to', raw_data_set_fname)
else:
# If the raw file already exists, just load it
print('Loading from', raw_data_set_fname)
loaded_data = pickle.load(open(raw_data_set_fname))
data_X, data_Y, data_Y_one_hot = loaded_data['data_X'], loaded_data['data_Y'], loaded_data['data_Y_one_hot']
if args.final_run:
source_fnames, source_objs = loaded_data['source_fnames'], loaded_data['source_objs']
# Each record of the @windows_X and @windows_Y lists corresponds to one "fold" of the used cross-validation
# procedure
windows_X = []
windows_Y = []
# Will subtract the initial value from the following keys (only the changes in these keys should matter),
# not to overfit, for example, for spatial location of the eye movement: x and y coordinates.
keys_to_subtract_start = sorted({'x', 'y'}.intersection(keys_to_keep))
print('Will subtract the starting values of the following features:', keys_to_subtract_start)
keys_to_subtract_start_indices = [i for i, key in enumerate(keys_to_keep) if key in keys_to_subtract_start]
for subset_index in range(len(data_X)):
x, y = extract_windows(data_X[subset_index], data_Y_one_hot[subset_index],
window_length=args.window_size,
downsample=downsample,
padding_features=padding_features)
windows_X.append(np.array(x))
windows_Y.append(np.array(y))
# Subtract the first value of each feature inside each window
for col_ind in keys_to_subtract_start_indices:
windows_X[-1][:, :, col_ind] -= windows_X[-1][:, 0, col_ind].reshape(-1, 1)
# TensorBoard logs directory to supervise model training
log_root_dir = 'data/tensorboard_logs/{}'
logname = 'logs_{}_{}'.format(datetime.now().strftime("%Y-%m-%d_%H-%M"),
os.path.split(MODEL_PATH.rstrip('/'))[1]) # add model description to filename
callbacks_list = [History(), TensorBoard(batch_size=args.batch_size, log_dir=log_root_dir.format(logname),
write_images=False)] # , histogram_freq=100, write_grads=True)]
# All results are stored as lists - one element for one left-out group (one fold of the cross-validation,
# in this case)
results = {
'accuracy': [],
'F1-SP': [],
'F1-FIX': [],
'F1-SACC': [],
'F1-NOISE': []
}
raw_results = {'true': [], 'pred': []}
training_histories = [] # histories for all folds
# LOVO-CV (Leave-One-Video-Out; Leave-n-Observers-Out overestimates model performance, see paper)
num_training_runs = 0 # count the actual training runs, in case we need to stop after just one
# (if @args.run_once == True)
# iterate through stimulus video clips, leaving each one out in turn
for i, video_name in enumerate(all_video_names):
if args.run_once and (args.run_once_video is not None and video_name != args.run_once_video):
# --run-once is enabled and the --run-once-video argument has been passed. If this video name does not
# match the @video_name, skip it
continue
# Check if final (trained) model already exists.
# Thanks to creating an empty file in the "else" clause below, can run several training procedures at the same
# time (preferably on different machines or docker instances, with MODEL_PATH set to some location that is
# accessible to all the machines/etc.) - the other training procedures will skip training the model for this
# particular fold of the cross-validation procedure.
model_fname = MODEL_PATH + '/Conv_sample_windows_epochs_{}_without_{}.h5'.format(args.num_epochs, video_name)
if os.path.exists(model_fname):
ALREADY_TRAINED = True
print('Skipped training, file in', model_fname, 'exists')
if not args.final_run:
# if no need to generate output .arff files, just skip this cross-validation fold
continue
else:
# have not begun training yet
ALREADY_TRAINED = False
print('Creating an empty file in {}'.format(model_fname))
os.system('touch "{}"'.format(model_fname))
if not ALREADY_TRAINED:
# need to train the model
r = np.random.RandomState(0)
# here, we ignore the "left out" video clip @i, but aggregate over all others
train_set_len = sum([len(windows_X[j]) for j in range(len(windows_X)) if j != i])
print('Total amount of windows:', train_set_len)
# will shuffle all samples according to this permutation, and will keep only the necessary amount
# (by default, 50,000 for training)
perm = r.permutation(train_set_len)[:args.num_training_samples]
train_X = []
train_Y = []
indices_range_low = 0
for j in range(len(windows_X)):
if j == i:
continue # skip the test set
indices_range_high = indices_range_low + len(windows_X[j])
# permutation indices [indices_range_low; indices_range_high) are referring
# to the windows in @windows_X[j]
local_indices = perm[(perm >= indices_range_low) * (perm < indices_range_high)]
# re-map in "global" indices (inside @perm) onto "local" indices (inside @windows_X[j])
local_indices -= indices_range_low
train_X.append(windows_X[j][local_indices])
train_Y.append(windows_Y[j][local_indices])
indices_range_low = indices_range_high
# assemble the entire training set
train_X = np.concatenate(train_X)
train_Y = np.concatenate(train_Y)
# if fine-tuning, load a pre-trained model; if not - create a model from scratch
if args.initial_epoch:
# We have to pass our metrics (f1_SP and so on) as custom_objects here and below, since it won't load
# otherwise
model = keras.models.load_model(MODEL_PATH + '/Conv_sample_windows_epochs_{}_without_{}.h5'.format(args.initial_epoch, video_name),
custom_objects={'f1_SP': f1_SP, 'f1_SACC': f1_SACC, 'f1_FIX': f1_FIX})
print('Loaded model from', MODEL_PATH + '/Conv_sample_windows_epochs_{}_without_{}.h5'.format(args.initial_epoch, video_name))
else:
model = create_model(num_classes=num_classes, batch_size=args.batch_size,
train_data_shape=train_X.shape,
dropout_rate=0.3,
padding_mode=args.conv_padding_mode,
num_conv_layers=args.num_conv, conv_filter_counts=args.conv_units,
num_dense_layers=args.num_dense, dense_units_count=args.dense_units,
num_blstm_layers=args.num_blstm, blstm_unit_counts=args.blstm_units,
unroll_blstm=False,
no_bidirectional=args.no_bidirectional)
else:
model = keras.models.load_model(model_fname, custom_objects={'f1_SP': f1_SP,
'f1_SACC': f1_SACC,
'f1_FIX': f1_FIX})
print('Skipped training, loaded model from', model_fname)
if args.dry_run:
return model
# need to run training now?
if TRAINING_MODE and not ALREADY_TRAINED:
# Store model training history. Make sure (again?) that training is always performed with
# @num_training_samples sequences
assert train_X.shape[0] == train_Y.shape[0]
assert train_X.shape[0] == args.num_training_samples, 'Not enough training samples (might need to ' \
'increase --overlap, decrease --window, or ' \
'decrease --num-training-samples in the command ' \
'line arguments.'
training_histories.append(model.fit(train_X, train_Y,
epochs=args.num_epochs,
batch_size=args.batch_size,
shuffle=True,
callbacks=callbacks_list,
validation_split=0.1,
verbose=1,
initial_epoch=args.initial_epoch))
model.save(model_fname)
# Completed a cross-validation fold with actual training
num_training_runs += 1
# Test model on the left-out cross-validation group (@i is the index corresponding to the test set on this run).
# @raw will contain predicated class probabilities as well as true labels.
# @processed will contain performance statistics of this fold
raw, processed = evaluate_test(model, data_X[i], data_Y_one_hot[i],
keys_to_subtract_start_indices=keys_to_subtract_start_indices,
padding_features=padding_features,
split_by_items=args.final_run) # keep sequences of different observers separate,
# if we still need to write output .arff files
# store all results (raw and processed)
for k in list(raw_results.keys()):
if args.final_run:
# On the "final" run, @raw[k] is split into several sequences each, need to concatenate here
# (in order to maintain the same format of the .pickle files)
raw_results[k].append(np.concatenate(raw[k], axis=0))
else:
raw_results[k].append(raw[k])
for k in list(results.keys()):
results[k].append(processed[k])
print('Evaluating for video', video_name)
for stat_name in ['FIX', 'SACC', 'SP', 'NOISE']:
print('F1-{}'.format(stat_name), results['F1-{}'.format(stat_name)][-1])
if args.final_run and args.output_folder is not None:
if args.output_folder == 'auto':
args.output_folder = OUT_PATH
print('Creating the detection outputs in', args.output_folder)
# Generate actual ARFF outputs
# Iterate through file names, original objects (from input .arff's), ground truth labels,
# and predicted labels:
for source_fname, source_obj, labels_true, labels_pred in \
zip_equal(source_fnames[i], source_objs[i],
raw['true'], raw['pred']):
full_folder, suffix = os.path.split(source_fname)
folder_name = os.path.split(full_folder)[1] # subfolder name = video name
out_fname = '{}/{}/{}'.format(args.output_folder, folder_name, suffix)
# create folders that might not exist yet
if not os.path.exists(args.output_folder):
os.mkdir(args.output_folder)
if not os.path.exists('{}/{}'.format(args.output_folder, folder_name)):
os.mkdir('{}/{}'.format(args.output_folder, folder_name))
# get labels from probabilities for each label
labels_true = np.argmax(labels_true, axis=-1)
labels_pred = np.argmax(labels_pred, axis=-1)
known_class_mask = labels_true != 0 # in case there were some unassigned labels in the ground truth
labels_true = labels_true[known_class_mask]
labels_pred = labels_pred[known_class_mask]
# sanity check: "true" labels must match the "handlabeller_final" column of the input .arff files
assert (labels_true == source_obj['data']['handlabeller_final']).all()
# add a column containing predicted labels
source_obj = ArffHelper.add_column(source_obj,
name=sp_processor.EM_TYPE_ATTRIBUTE_NAME,
dtype=sp_processor.EM_TYPE_ARFF_DATA_TYPE,
default_value=sp_processor.EM_TYPE_DEFAULT_VALUE)
# fill in with categorical values instead of numerical ones
# (use @CORRESPONDENCE_TO_HAND_LABELLING_VALUES_REVERSE for conversion)
source_obj['data'][sp_processor.EM_TYPE_ATTRIBUTE_NAME] = \
[CORRESPONDENCE_TO_HAND_LABELLING_VALUES_REVERSE[x] for x in labels_pred]
ArffHelper.dump(source_obj, open(out_fname, 'w'))
if args.run_once and num_training_runs >= 1:
break
# get statistics over all splits that are already processed
if not ALREADY_TRAINED or args.final_run:
raw_results['true'] = np.concatenate(raw_results['true'])
raw_results['pred'] = np.concatenate(raw_results['pred'])
mask = np.argmax(raw_results['true'], axis=-1) != 0
print('Found', np.logical_not(mask).sum(), 'UNKNOWN samples in the raw ``true\'\' predictions ' \
'(including the artificially padded parts of the last windows ' \
'in each sequence, in order to match window width)')
print(raw_results['true'].shape, raw_results['pred'].shape)
unknown_class_mask = raw_results['true'][:, :, 0] == 1 # count "unknown"s in the one-hot-encoded true labels
print('Overall classification scores per class:')
for stat_i, stat_name in zip(list(range(1, 5)), ['FIX', 'SACC', 'SP', 'NOISE']):
results['overall-F1-{}'.format(stat_name)] = K.eval(categorical_f1_score_for_class(raw_results['true'],
raw_results['pred'],
stat_i,
'float64'))
print('F1-{}'.format(stat_name), results['overall-F1-{}'.format(stat_name)])
results['overall-acc'] = np.mean(np.argmax(raw_results['true'][np.logical_not(unknown_class_mask)], axis=-1) ==
np.argmax(raw_results['pred'][np.logical_not(unknown_class_mask)], axis=-1))
# how many samples did the network leave "UNKNOWN"
results['overall-UNKNOWN-samples'] = (np.argmax(raw_results['pred'], axis=-1) == 0).sum()
print('Sample left UNKNOWN:', results['overall-UNKNOWN-samples'], '(including the UNKNOWN samples matching ' \
'the window-padded ``true\'\' labels from ' \
'above)')
# Run the full evaluation.
# Need a downloaded and installed sp_tool package for this! See http://michaeldorr.de/smoothpursuit/sp_tool.zip
# See README for more information on how to do this.
if args.final_run and args.output_folder:
print('Running sp_tool eval --> {out_dir}/eval.json'.format(out_dir=args.output_folder))
cmd = 'python {sp_tool_dir}/examples/evaluate_on_gazecom.py ' \
'--in "{out_dir}" ' \
'--hand "{gt_dir}" ' \
'--pretty > ' \
'"{out_dir}/eval.json"'.format(sp_tool_dir=args.sp_tool_folder,
out_dir=args.output_folder,
gt_dir=args.ground_truth_folder)
print('Running command:\n', cmd)
if os.path.exists('{}/examples/'.format(args.sp_tool_folder)):
cmd_res = os.system(cmd)
if cmd_res != 0:
print('Something failed during the sp_tool evaluation run. Check the command above and run it ' \
'manually, if necessary! Make sure you also *installed* the sp_tool framework, not just ' \
'downloaded it (see sp_tool/README for details). Also, make sure both the output folder ' \
'"{}" and the ground truth folder "{}" exist (e.g. were extracted from the respective ' \
'archives).'.format(args.output_folder, args.ground_truth_folder))
else:
print('\n\nCould not run final evaluation! sp_tool folder could not be found in', args.sp_tool_folder)
print('Pass the --sp-tool-folder argument that points to the correct location (relative or absolute) ' \
'of the sp_tool folder, or download the full deep_eye_movement_classification.zip archive from' \
'http://michaeldorr.de/smoothpursuit again.')
def parse_args(dry_run=False):
"""
Parse command line arguments, or just create the parser (if @dry_run == True)
:param dry_run: if True, will return the argument parser itself, and not the parsed arguments
:return: either parser arguments' Namespace object (if @dry_run == False),
or the argument parser itself (if @dry_run == True)
"""
parser = ArgumentParser('Sequence-to-sequence eye movement classification')
parser.add_argument('--final-run', '--final', '-f', dest='final_run', action='store_true',
help='Final run with testing only, but on full data (not "clean" data).')
parser.add_argument('--folder', '--output-folder', dest='output_folder', default=None,
help='Only for --final-run: write prediction results as ARFF files here.'
'Can be set to "auto" to select automatically.')