H-Bridge 14 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8873, an automotive H-Bridge motor driver from Texas Instruments. The DRV8873 is an N-channel H-Bridge motor driver that can drive one bidirectional brushed DC motor, two unidirectional brushed DC motors, solenoids, or other resistive inductive loads.
- Author : Stefan Ilic
- Date : Sep 2023.
- Type : I2C/SPI type
We provide a library for the H-Bridge 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for H-Bridge 14 Click driver.
hbridge14_cfg_setup
Config Object Initialization function.
void hbridge14_cfg_setup ( hbridge14_cfg_t *cfg );
hbridge14_init
Initialization function.
err_t hbridge14_init ( hbridge14_t *ctx, hbridge14_cfg_t *cfg );
hbridge14_default_cfg
Click Default Configuration function.
err_t hbridge14_default_cfg ( hbridge14_t *ctx );
hbridge14_set_pins
H-Bridge 14 set pins function.
err_t hbridge14_set_pins ( hbridge14_t *ctx, uint8_t set_mask, uint8_t clr_mask );
hbridge14_sleep_state
H-Bridge 14 control sleep function.
err_t hbridge14_sleep_state ( hbridge14_t *ctx, uint8_t sleep_state );
hbridge14_drive_motor
H-Bridge 14 drive motor function.
err_t hbridge14_drive_motor ( hbridge14_t *ctx, uint8_t state );
This example demonstrates the use of the H-Bridge 14 board by driving the motor in both directions with braking and coasting in between.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
hbridge14_cfg_t hbridge14_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
hbridge14_cfg_setup( &hbridge14_cfg );
HBRIDGE14_MAP_MIKROBUS( hbridge14_cfg, MIKROBUS_1 );
err_t init_flag = hbridge14_init( &hbridge14, &hbridge14_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( HBRIDGE14_ERROR == hbridge14_default_cfg ( &hbridge14 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Drives the motor in both directions with coasting and braking in between, every sate is lasting 5 seconds.
void application_task ( void )
{
uint8_t fault_status = 0;
hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CW );
log_printf( &logger, " Driving motor Clockwise \r\n" );
hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_BRAKE );
log_printf( &logger, " Brake is on \r\n" );
hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CCW );
log_printf( &logger, " Driving motor counter-clockwise \r\n" );
hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_COASTING );
log_printf( &logger, " Driving motor Coasting \r\n" );
hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.HBridge14
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.