-
Notifications
You must be signed in to change notification settings - Fork 8
/
submit_evaluation.sh
executable file
·166 lines (139 loc) · 6.36 KB
/
submit_evaluation.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/bin/bash
train_dataset=libritts
eval_dataset=vctk
eval_split=eval_all
splits="train_nodev_all dev_all eval_all"
# eval step
step=all # utmos|asr|asv
# model setup
ling_enc=vqwav2vec
spk_enc=uttdvec
pros_enc=ppgvcf0
dec=tacoar
vocoder=ppgvchifigan
n_asr_jobs=60
# exp setup
exp_name=libritts_train_0
root=$PWD
# eval setup
task=oneshot_vc
epochs=92
eval_list=data/$eval_dataset/$eval_split/eval_list_m2m_vc_small_oneshot.json
. ./bin/parse_options.sh || exit 1;
exp_dir=exp/${train_dataset}_${ling_enc}_${spk_enc}_${pros_enc}_${dec}_${vocoder}/${exp_name}
if [ ! -e $exp_dir ] ; then
echo "$exp_dir does not exist"
exit 1;
fi
eval_wav_dir=$exp_dir/inference_${eval_dataset}/$task/$epochs
[ ! -e $exp_dir/evaluation_$eval_dataset ] && mkdir -p $exp_dir/evaluation_$eval_dataset
if [[ "$step" == "utmos" ]] || [[ "$step" == "all" ]]; then
# utmos
utmos_job=$exp_dir/scripts/utmos_${task}_${epochs}_${eval_dataset}.sh
utmos_log=$exp_dir/logs/utmos_${task}_${epochs}_${eval_dataset}.log
touch $utmos_job
chmod +x $utmos_job
cat <<EOF > $utmos_job
#!/bin/bash
wav_dir=$root/$eval_wav_dir
out_csv=$root/$exp_dir/evaluation_${eval_dataset}/utmos_${task}_${epochs}.csv
conda=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7
conda_env=voicemos
export PATH=/share/mini1/sw/std/cuda/cuda11.1/bin:\$PATH
export CUDA_HOME=/share/mini1/sw/std/cuda/cuda11.1/
export LD_LIBRARY_PATH=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib:/share/mini1/sw/std/cuda/cuda11.1/lib64:\$LD_LIBRARY_PATH
source \$conda/bin/activate \$conda_env
cd evaluation/UTMOS-demo/
echo "eval_wav_dir: \${wav_dir} out_csv \${out_csv}"
python predict.py --mode predict_dir --inp_dir \$wav_dir --bs 1 --out_path \$out_csv
EOF
submitjob -M2 $utmos_log $utmos_job
echo "utmos job submited, see ${utmos_log}"
fi
# speechbrain asr
if [[ "$step" == "asr" ]] || [[ "$step" == "all" ]]; then
# generate test_csv for speechbrain_asr.py from eval_wav_dir
python evaluation/test_csv_speechbrain_asr.py \
--eval_list $eval_list \
--eval_wav_dir $root/$eval_wav_dir \
--test_csv_path $root/$exp_dir/evaluation_${eval_dataset}/speechbrain_asr_test_csv_${task}_${epochs}.csv \
--n_splits $n_asr_jobs
asr_job=$exp_dir/scripts/asr_${task}_${epochs}_${eval_dataset}.sh
asr_log=$exp_dir/logs/asr_${task}_${epochs}_${eval_dataset}.log
touch $asr_job
chmod +x $asr_job
cat <<EOF > $asr_job
#!/bin/bash
conda=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7
conda_env=speechbrain
source \$conda/bin/activate \$conda_env
export PATH=/share/mini1/sw/std/cuda/cuda11.1/bin:\$PATH
export CUDA_HOME=/share/mini1/sw/std/cuda/cuda11.1/
export LD_LIBRARY_PATH=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib:/share/mini1/sw/std/cuda/cuda11.1/lib64:\$LD_LIBRARY_PATH
python evaluation/new_speechbrain_asr.py evaluation/transformer_asr.yaml \
--test_csv=[$root/$exp_dir/evaluation_${eval_dataset}/speechbrain_asr_test_csv_${task}_${epochs}.\${SGE_TASK_ID}.csv] \
--wer_file=$root/$exp_dir/evaluation_${eval_dataset}/wer_${task}_${epochs}.\${SGE_TASK_ID}.txt \
--output_folder=$root/$exp_dir/evaluation_${eval_dataset}/asr_out_${task}_${epochs}/output.\${SGE_TASK_ID} \
--device=cpu
EOF
submitjob -n $n_asr_jobs -M2 -o -l hostname="!node20&!node21&!node23&!node24&!node26&!node27&!node28&!node29" -eo $asr_log $asr_job
echo "asr job submited, see ${asr_log}"
fi
if [[ "$step" == "asr_score" ]]; then
output_dirs=""
for n in $(seq $n_asr_jobs); do
output_dirs+=" $root/$exp_dir/evaluation_${eval_dataset}/asr_out_${task}_${epochs}/output.${n}"
done
job=$root/$exp_dir/scripts/asr_score_${eval_dataset}.sh
log=$root/$exp_dir/logs/asr_score_${eval_dataset}.log
touch $job
chmod +x $job
cat << EOF > $job
#!/bin/bash
conda=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7
conda_env=speechbrain
source \$conda/bin/activate \$conda_env
python3 evaluation/speechbrain_asr_wer.py \
--decoding_output_dirs $output_dirs \
--decoding_output_filename token.txt \
--wer_output_path $root/$exp_dir/evaluation_${eval_dataset}/asr_out_${task}_${epochs}/wer.all.txt
EOF
submitjob -o -l hostname="!node20&!node21&!node23&!node24&!node26&!node27&!node28&!node29" -eo $log $job
echo "asr score job submited, see logs in $log"
fi
if [[ "$step" == "asv" ]] || [[ "$step" == "all" ]]; then
eval_list_basename=$( basename $eval_list | sed -e "s/\.[^\.]*$//g")
positive_pairs=evaluation/${eval_list_basename}_${eval_dataset}_asv_positive.txt
negative_pairs=evaluation/${eval_list_basename}_${eval_dataset}_asv_negative.txt
if [ ! -e $positive_pairs ] || [ ! -e $negative_pairs ]; then
python3 evaluation/test_csv_speechbrain_asv_${eval_dataset}.py \
--eval_list $eval_list \
--positive_output_veri_file $positive_pairs \
--negative_output_veri_file $negative_pairs \
--data_dir data/$eval_dataset \
--splits $splits || exit 1;
fi
asv_job=$exp_dir/scripts/asv_${task}_${epochs}_${eval_dataset}.sh
asv_log=$exp_dir/logs/asv_${task}_${epochs}_${eval_dataset}.log
[ -e $exp_dir/evaluation_${eval_dataset}/asv_out_${task}_${epochs} ] && rm -rf $exp_dir/evaluation_${eval_dataset}/asv_out_${task}_${epochs}
mkdir -p $exp_dir/evaluation_${eval_dataset}/asv_out_${task}_${epochs}
touch $asv_job
chmod +x $asv_job
cat <<EOF > $asv_job
conda=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7
conda_env=speechbrain
source \$conda/bin/activate \$conda_env
export PATH=/share/mini1/sw/std/cuda/cuda11.1/bin:\$PATH
export CUDA_HOME=/share/mini1/sw/std/cuda/cuda11.1/
export LD_LIBRARY_PATH=/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib:/share/mini1/sw/std/cuda/cuda11.1/lib64:\$LD_LIBRARY_PATH
python3 evaluation/speechbrain_asv.py \
$eval_wav_dir \
$positive_pairs \
$negative_pairs \
cuda \
$exp_dir/evaluation_${eval_dataset}/asv_out_${task}_${epochs}
EOF
#submitjob -g1 -M2 -o gputype="GeForceGTXTITANX|GeForceGTX1080Ti|GeForceRTX3060" -eo $asv_log $asv_job
submitjob -g1 -M2 -o gputype="GeForceGTX1080Ti" -eo $asv_log $asv_job
echo "asv job submited, see ${asv_log}"
fi