forked from THUDM/ChatGLM-6B
-
Notifications
You must be signed in to change notification settings - Fork 0
/
web_demo.py
166 lines (128 loc) · 5.55 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os, sys
import gradio as gr
import mdtex2html
import torch
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
)
from arguments import ModelArguments, DataTrainingArguments
model = None
tokenizer = None
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(input, chatbot, max_length, top_p, temperature, history):
chatbot.append((parse_text(input), ""))
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
temperature=temperature):
chatbot[-1] = (parse_text(input), parse_text(response))
yield chatbot, history
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">ChatGLM</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
history = gr.State([])
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
def main():
global model, tokenizer
parser = HfArgumentParser((
ModelArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))[0]
else:
model_args = parser.parse_args_into_dataclasses()[0]
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(
model_args.model_name_or_path, trust_remote_code=True)
config.pre_seq_len = model_args.pre_seq_len
config.prefix_projection = model_args.prefix_projection
if model_args.ptuning_checkpoint is not None:
print(f"Loading prefix_encoder weight from {model_args.ptuning_checkpoint}")
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
new_prefix_state_dict = {}
for k, v in prefix_state_dict.items():
if k.startswith("transformer.prefix_encoder."):
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
else:
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
if model_args.quantization_bit is not None:
print(f"Quantized to {model_args.quantization_bit} bit")
model = model.quantize(model_args.quantization_bit)
if model_args.pre_seq_len is not None:
# P-tuning v2
model = model.half().cuda()
model.transformer.prefix_encoder.float().cuda()
model = model.eval()
demo.queue().launch(share=False, inbrowser=True)
if __name__ == "__main__":
main()