forked from loveplay1983/inception
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inception.py
418 lines (309 loc) · 15.1 KB
/
inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
demo code from https://www.analyticsvidhya.com/blog/2018/10/understanding-inception-network-from-scratch/
"""
###################### Import packages ############################################
import keras
# Layer class definition "keras/engine/base_layer.py"
# "from ..engine.base_layer import Layer" is defined within "keras/layers/core.py"
from keras.layers.core import Layer
import keras.backend as K
import tensorflow as tf
# "cifar10" is defined within "keras/datasets/cifar10.py"
from keras.datasets import cifar10
# Model class definition "keras/engine/training.py"
# "from .engine.training import Model" is defined within "keras folder - models.py file"
from keras.models import Model
# Most of the functions or classes were imported within "keras/layers/__init__.py"
# The definition details were defined within "keras/layers"
from keras.layers import Conv2D, MaxPool2D, Dropout, Dense, Input, concatenate, \
GlobalAveragePooling2D, AveragePooling2D, Flatten
# opencv for python
import cv2
import numpy as np
# Numpy related utilities "keras/utils/np_utils.py"
from keras.utils import np_utils
import math
# "keras.optimizers" is defined within "keras" root directory
from keras.optimizers import SGD
# "keras.callbacks" is defined within "keras" root directory
from keras.callbacks import LearningRateScheduler
####################### Preprocessing before trainig ##############################
num_classes = 10
def load_cifar10_data(img_rows, img_cols):
"""
Load the cifar10 data and do some preprocessing like resizing...
img_rows, img_cols - size of resized image
"""
# Load cifar10 training and validation sets
(X_train, Y_train), (X_valid, Y_valid) = cifar10.load_data()
# Resize training images
X_train = np.array([cv2.resize(img, (img_rows, \
img_cols)) for img in X_train[:, :, :, :]])
X_valid = np.array([cv2.resize(img, (img_rows, \
img_cols)) for img in X_valid[:, :, :, :]])
# Check the data type of X_train or X_valid
for each in X_train:
print(type(each))
# Transform targets to keras compatible format
Y_train = np_utils.to_categorical(Y_train, num_classes)
Y_valid = np_utils.to_categorical(Y_valid, num_classes)
X_train = X_train.astype('float32')
X_valid = X_valid.astype('float32')
# Data normalization
X_train = X_train / 255.0
X_valid = X_valid / 255.0
return X_train, Y_train, X_valid, Y_valid
X_train, y_train, X_test, y_test = load_cifar10_data(74, 74)
###################### Define deep learning architecture ###########################
# Auxilliary output
# def aux_output(input_x, output_name):
#
# input_x = AveragePooling2D((5, 5), strides=3)(input_x)
# input_x = Conv2D(128, (1, 1), padding='same', activation='relu')(input_x)
# input_x = Flatten()(input_x)
# input_x = Dense(1024, activation='relu')(input_x)
# input_x = Dropout(0.7)(input_x)
# input_x = Dense(10, activation='softmax', name=output_name)(input_x)
#
# return input_x
#
# Inception module
"""
Previous layer ------------------------1x1 convolutions ---|
----1x1 convolutions -- 3x3 convolutions ---|--- Filter concat
----1x1 convolutions ---5x5 convolutions ---|
----3x3 max pooling ---1x1 convolutions ---|
filters_1x1 - number of 1x1 filter
filters_3x3_reduce - number of 3x3_reduce filter, i.e. the 1x1 filter
...
filters_pool_proj - number of pooling projection filter, i.e another conv
"""
def inception_cell(x, \
filters_1x1, \
filters_3x3_reduce, \
filters_3x3, \
filters_5x5_reduce, \
filters_5x5, \
filters_pool_proj, \
name=None):
conv_1x1 = Conv2D(filters_1x1, (1, 1), padding='same', activation='relu', \
kernel_initializer=kernel_init, bias_initializer=bias_init)(x)
conv_3x3_reduce = Conv2D(filters_3x3_reduce, (1, 1), padding='same', activation= \
'relu', kernel_initializer=kernel_init, bias_initializer=bias_init)(x)
conv_3x3 = Conv2D(filters_3x3, (3, 3), padding='same', activation='relu', \
kernel_initializer=kernel_init, bias_initializer=bias_init)(conv_3x3_reduce)
conv_5x5_reduce = Conv2D(filters_5x5_reduce, (1, 1), padding='same', activation= \
'relu', kernel_initializer=kernel_init, bias_initializer=bias_init)(x)
conv_5x5 = Conv2D(filters_5x5, (1, 1), padding='same', activation='relu', \
kernel_initializer=kernel_init, bias_initializer=bias_init)(conv_5x5_reduce)
# First make a max-pooling in (3,3) and stride 1
pool_proj_3x3 = MaxPool2D((3, 3), strides=(1, 1), padding='same')(x)
# Then do a final conv base on the above max-pooling
pool_proj = Conv2D(filters_pool_proj, (1, 1), padding='same', activation='relu', \
kernel_initializer=kernel_init, bias_initializer=bias_init)(pool_proj_3x3)
# Final concatenation of inception cell in which it combines all the different filter elements
'''
keras/layers/merge.py
class Concatenate(_Merge):
"""Layer that concatenates a list of inputs.
It takes as input a list of tensors,
all of the same shape except for the concatenation axis,
and returns a single tensor, the concatenation of all inputs.
# Arguments
axis: Axis along which to concatenate.
**kwargs: standard layer keyword arguments.
"""
def concatenate(inputs, axis=-1, **kwargs):
"""Functional interface to the `Concatenate` layer.
# Arguments
inputs: A list of input tensors (at least 2).
axis: Concatenation axis.
**kwargs: Standard layer keyword arguments.
# Returns
A tensor, the concatenation of the inputs alongside axis `axis`.
"""
return Concatenate(axis=axis, **kwargs)(inputs)
'''
output = concatenate([conv_1x1, conv_3x3, conv_5x5, pool_proj], axis=3, name=name)
return output
# Initialize the kernel and bias (kernel is a.k.a weight matrix in "CNN")
kernel_init = keras.initializers.glorot_uniform()
bias_init = keras.initializers.Constant(value=0.2)
"""
Inception network structure - You can check the whole network structure image "inception-model.png" in the current folder.
The basic structure in text - You can check the text network in the current folder too, named "inception-model-text.png"
'''
Notice that when viewing the inception cell name, you can find mark like (num+letter, e.g. 3a, 3b, ...), those are the symbols
of the inception cell location.
num - the location or the index of the current layer
a,b,c - the repetition number of the inception cell
'''
#################################### Basic structure of the inception layeyr ################################################
conv 7x7/2 -> maxpool 3x3/2 -> conv 3x3/1 -> maxpool 3x3/2 -> inception-cell(3a) -> inception-cell(3b) -> maxpool 3x3/2 ->
inception(4a) -> inception(4b) -> inception(4c) -> inception(4d) -> inception()4e -> maxpool 3x3/2 -> inception(5a) ->
inception(5b) -> avgpool 7x7x1 -> dropout(40%) -> linear -> softmax
###############################################################################################################################
Sometimes we can also include the branch output such as pull one of the inception cell to an independent branch conv, flatten,
dropout and then final dense, i.e. a softmax, then see whether our current network works fine.
"""
# Before getting into the structure of this inception network, we first make one simple idea clear that is how to seperate layers
# i.e what exactly is a single layer consisted of.
# For "CNN" we often put conv and max pooling layer together as one layer
input_layer = Input(shape=(224, 224, 3)) # "from ..engine import Input"
x = Conv2D(64, (7, 7), padding='same', strides=(2, 2), activation='relu', name='conv_1_7x7/2', \
kernel_initializer=kernel_init, bias_initializer=bias_init)(input_layer)
# Important note and `CNN REVIEW`, max pooling is different from conv layer where it doesn't count the volume for individual max pooling filter,
# rather it use only a 2D filter without volume dim and go through each of the previous corresponding 2D output of the volume,
# finally, max pooling puts all the piece of result to form a new 3D output, in other words, the volume of the new formed output
# is usually the number of the channels of the previous layer.
x = MaxPool2D((3, 3), padding='same', strides=(2, 2), name='max_pool_1_3x3/2')(x)
# The following technic is often used in convolution neural networks in which we first use a 1x1 filter and a 3x3 or ixi(i stands for arbitrary number)
# right after which is also called "bottle neck". The main idea is to reduce the computational cost.
x = Conv2D(64, (1, 1), padding='same', strides=(1, 1), activation='relu', name='conv_2a_3x3/1')(x)
x = Conv2D(192, (3, 3), padding='same', strides=(1, 1), activation='relu', name='conv_2b_3x3/1')(x)
x = MaxPool2D((3, 3), padding='same', strides=(2, 2), name='max_pool_2_3x3/2')(x)
# First inception cell of layer 3
x = inception_cell(x, \
filters_1x1=64, \
filters_3x3_reduce=96, \
filters_3x3=128, \
filters_5x5_reduce=16, \
filters_5x5=32, \
filters_pool_proj=32, \
name='inception_3a')
# Second inception cell of layer 3
x = inception_cell(x, \
filters_1x1=128, \
filters_3x3_reduce=128, \
filters_3x3=192, \
filters_5x5_reduce=32, \
filters_5x5=96, \
filters_pool_proj=64, \
name='inception_3b')
# Pooling for layer 3
x = MaxPool2D((3, 3), padding='same', strides=(2, 2), name='max_pool_3_3x3/2')(x)
# First inception cell for layer 4
x = inception_cell(x, \
filters_1x1=192, \
filters_3x3_reduce=96, \
filters_3x3=208, \
filters_5x5_reduce=16, \
filters_5x5=48, \
filters_pool_proj=64, \
name='inception_4a')
######################## Auxilliary output - x1 #####################################
# x1 = aux_output(x, "auxilliary_output_1")
x1 = AveragePooling2D((5, 5), strides=3)(x)
x1 = Conv2D(128, (1, 1), padding='same', activation='relu')(x1)
x1 = Flatten()(x1)
x1 = Dense(1024, activation='relu')(x1)
x1 = Dropout(0.7)(x1)
x1 = Dense(10, activation='softmax', name='auxilliary_output_1')(x1)
# Second inception cell for layer 4
x = inception_cell(x, \
filters_1x1=160, \
filters_3x3_reduce=112, \
filters_3x3=224, \
filters_5x5_reduce=24, \
filters_5x5=64, \
filters_pool_proj=64, \
name='inception_4b')
# Thrid inception cell for layer 4
x = inception_cell(x, \
filters_1x1=128, \
filters_3x3_reduce=128, \
filters_3x3=256, \
filters_5x5_reduce=24, \
filters_5x5=64, \
filters_pool_proj=64, \
name='inception_4c')
# Fourth inception cell for layer 4
x = inception_cell(x, \
filters_1x1=112, \
filters_3x3_reduce=144, \
filters_3x3=288, \
filters_5x5_reduce=32, \
filters_5x5=64, \
filters_pool_proj=64, \
name='inception_4d')
######################## Auxilliary output - x2 #####################################
# x2 = aux_output(x, "auxilliary_output_2")
x2 = AveragePooling2D((5, 5), strides=3)(x)
x2 = Conv2D(128, (1, 1), padding='same', activation='relu')(x2)
x2 = Flatten()(x2)
x2 = Dense(1024, activation='relu')(x2)
x2 = Dropout(0.7)(x2)
x2 = Dense(10, activation='softmax', name="auxilliary_output_2")(x2)
# Fifth inception cell for layer 4
x = inception_cell(x, \
filters_1x1=256, \
filters_3x3_reduce=160, \
filters_3x3=320, \
filters_5x5_reduce=32, \
filters_5x5=128, \
filters_pool_proj=128, \
name='inception_4e')
# Pooling for layer 4
x = MaxPool2D((3, 3), padding='same', strides=(2, 2), name='max_pool_4_3x3/2')(x)
# First inception cell for layer 5
x = inception_cell(x, \
filters_1x1=256, \
filters_3x3_reduce=160, \
filters_3x3=320, \
filters_5x5_reduce=32, \
filters_5x5=128, \
filters_pool_proj=128, \
name='inception_5a')
# Second inception cell for layer 5
x = inception_cell(x, \
filters_1x1=384, \
filters_3x3_reduce=192, \
filters_3x3=384, \
filters_5x5_reduce=48, \
filters_5x5=128, \
filters_pool_proj=128, \
name='inception_5b')
# Global pooling for layer 5
x = GlobalAveragePooling2D(name='avg_pool_5_3x3/1')(x)
# Final steps
# Dropout
x = Dropout(0.4)(x)
# Dense
x = Dense(10, activation='softmax', name='output')(x)
################################ init the model ############################################
# Model(input, output, name, *args, **kwargs)
model = Model(input_layer, [x, x1, x2], name='inception_v1')
############################### summary the model ##########################################
model.summary()
############################## run the model ################################################
epochs = 25
# learning rate initialization
initial_lrate = 0.01
def decay(epoch, steps=100):
initial_lrate = 0.01
# decay rate
drop = 0.96
# decay steps
epochs_drop = 8
# decayed_learning_rate = lrate * decay_rate ^ (global_step / decay_steps)
lrate = initial_lrate * math.pow(drop, math.floor((1 + epoch) / epochs_drop))
return lrate
sgd = SGD(lr=initial_lrate, momentum=0.9, nesterov=False)
"""
class LearningRateScheduler(Callback):
'''
schedule: a function that takes an epoch index as input and current learning rate
and returns the new learning rate as output
verbose: 1 for updating messages and 0 quiet
'''
"""
lr_sc = LearningRateScheduler(decay, verbose=1)
# categorical_crossentropy - For multi-classification
# loss_weights - Optional list or dirtionary specifying scalar coefficients
# to weight the loss contributions of different model outputs
# metrics - List of metrics to be evaluated by the model during training
# and testing, typically you will use metrics=['accuracy']
model.compile(loss=['categorical_crossentropy', 'categorical_crossentropy', 'categorical_crossentropy'], \
loss_weights=[1, 0.3, 0.3], optimizer=sgd, metrics=['accuracy'])
history = model.fit(X_train, [y_train, y_train, y_train], validation_data=(X_test, [y_test, y_test, y_test]), \
epochs=epochs, batch_size=256, callbacks=[lr_sc])