-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
482 lines (381 loc) · 19.8 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import os
import torch
import faiss
import argparse
import torchvision
import numpy as np
from torch.utils.data import DataLoader
from dataset_loader import load_np_dataset, load_mvtec_ad, MVTecADDataset
from torchvision.transforms import transforms
from dataset_loader import SVHN, get_subclass_dataset, sparse2coarse
from sklearn.metrics import roc_auc_score
from models.resnet import ResNet18, ResNet34, ResNet50
CIFAR100_SUPERCLASS = [
[4, 31, 55, 72, 95],
[1, 33, 67, 73, 91],
[54, 62, 70, 82, 92],
[9, 10, 16, 29, 61],
[0, 51, 53, 57, 83],
[22, 25, 40, 86, 87],
[5, 20, 26, 84, 94],
[6, 7, 14, 18, 24],
[3, 42, 43, 88, 97],
[12, 17, 38, 68, 76],
[23, 34, 49, 60, 71],
[15, 19, 21, 32, 39],
[35, 63, 64, 66, 75],
[27, 45, 77, 79, 99],
[2, 11, 36, 46, 98],
[28, 30, 44, 78, 93],
[37, 50, 65, 74, 80],
[47, 52, 56, 59, 96],
[8, 13, 48, 58, 90],
[41, 69, 81, 85, 89],
]
def to_np(x):
return x.data.cpu().numpy()
def parsing():
parser = argparse.ArgumentParser(description='Selecting parameters',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--epochs', '-e', type=int, default=50,
help='Number of epochs to train.')
parser.add_argument('--batch_size', '-b', type=int,
default=128, help='Batch size.')
parser.add_argument('--seed', type=int, default=1,
help='seed')
parser.add_argument('--num_workers', type=int,
default=0, help='starting epoch from.')
parser.add_argument('--save_path', type=str,
default=None, help='Path to save files.')
parser.add_argument('--model_path', type=str,
default=None, help='Path to model to resume training.')
parser.add_argument('--config', type=str,
default="normal", help='Config of data on training model.')
parser.add_argument('--device', type=str,
default="cuda", help='cuda or cpu.')
# Optimizer Config
parser.add_argument('--optimizer', type=str,
default='sgd', help='optimizer.')
parser.add_argument('--learning_rate', '-lr', type=float,
default=0.001, help='The initial learning rate.')
parser.add_argument('--lr_update_rate', type=float,
default=5, help='The update rate for learning rate.')
parser.add_argument('--lr_gamma', type=float,
default=0.9, help='The gamma param for updating learning rate.')
parser.add_argument('--last_lr', type=float,
default=0, help='last learning rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float,
default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--dataset', default='cifar10', type=str, help='run index')
parser.add_argument('--run_index', default=0, type=int, help='run index')
parser.add_argument('--one_class_idx', default=None, type=int, help='run index')
parser.add_argument('--auc_cal', default=0, type=int, help='run index')
parser.add_argument('--noise', default=None, type=str, help='noise')
parser.add_argument('--csv', action="store_true", help='noise')
parser.add_argument('--score', default='mahal', type=str, help='noise')
parser.add_argument('--thresh', default=0, type=int, help='noise')
parser.add_argument('--svm_model', default=None, help='noise')
parser.add_argument('--aug', default=None, type=str, help='noise')
parser.add_argument('--gpu', default='1', type=str, help='noise')
parser.add_argument('--linear', action="store_true", help='noise')
args = parser.parse_args()
return args
def knn_score(train_set, test_set, n_neighbours=1):
index = faiss.IndexFlatL2(train_set.shape[1])
index.add(train_set)
D, _ = index.search(test_set, n_neighbours)
return np.sum(D, axis=1)
def mahalanobis_parameters(loader_in, net, args):
print("Calculating mahalanobis parameters...")
features = torch.cat(features, dim=0)
mean = torch.mean(features, dim=0)
# for feature in features:
# feature[feature==0] += 1e-12 # To preventing zero for torch.linalg.inv
cov = torch.cov(features.t())
cov += 1e-12 * torch.eye(cov.shape[0]).to(args.device)
inv_covariance = torch.linalg.inv(cov)
return mean, inv_covariance, features
def mahalanobis_distance(x, mu, inv_cov):
centered_x = x - mu
mahalanobis_dist = torch.sqrt(torch.clamp(torch.matmul(torch.matmul(centered_x.unsqueeze(0), inv_cov), centered_x), min=0))
return mahalanobis_dist
def load_data(root_path, args):
test_transform = transforms.Compose([transforms.ToTensor()])
if args.dataset == 'cifar10':
train_data = torchvision.datasets.CIFAR10(
root_path, train=True, transform=test_transform, download=True)
test_data = torchvision.datasets.CIFAR10(
root_path, train=False, transform=test_transform, download=True)
elif args.dataset == 'svhn':
train_data = SVHN(root=root_path, split="train", transform=test_transform)
test_data = SVHN(root=root_path, split="test", transform=test_transform)
elif args.dataset == 'cifar100':
train_data = torchvision.datasets.CIFAR100(
root_path, train=True, transform=test_transform, download=True)
test_data = torchvision.datasets.CIFAR100(
root_path, train=False, transform=test_transform, download=True)
elif args.dataset == 'anomaly':
np_test_img_path = 'path_to_new_anomaly_data'
np_test_target_path = 'path_to_new_anomaly_labels'
train_data = torchvision.datasets.CIFAR10(
root_path, train=True, transform=test_transform, download=True)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='anomaly', train=False)
elif args.dataset == 'anomaly100':
np_test_img_path = 'path_to_new_anomaly_data'
np_test_target_path = 'path_to_new_anomaly_label'
anomaly_path = 'path_to_new_anomaly_config'
train_data = torchvision.datasets.CIFAR100(
root_path, train=True, transform=test_transform, download=True)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='anomaly', train=False, anomaly_path=anomaly_path)
elif args.dataset == 'anomalysvhn':
np_test_img_path = 'path_to_new_anomaly_data'
np_test_target_path = 'path_to_new_anomaly_label'
anomaly_path = 'path_to_new_anomaly_config'
train_data = SVHN(root=root_path, split="train", transform=test_transform)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='anomaly', train=False, anomaly_path=anomaly_path)
elif args.dataset == 'aug':
if args.aug:
np_test_img_path = f'/generalization_repo_dataset/CIFAR10_Test_AC_6/{args.aug}.npy'
np_test_target_path = '/generalization_repo_dataset/CIFAR10_Test_AC_6/labels_test.npy'
else:
np_test_img_path = '/cifar10_test.npy'
np_test_target_path = '/cifar10_test_labels.npy'
train_data = torchvision.datasets.CIFAR10(
root_path, train=True, transform=test_transform, download=True)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='cifar10', train=False)
elif args.dataset == 'svhn_aug':
np_test_img_path = f'/generalization_repo_dataset/SVHN_Test_AC_6/{args.aug}.npy'
np_test_target_path = '/generalization_repo_dataset/SVHN_Test_AC_6/labels_test.npy'
train_data = SVHN(root=root_path, split="train", transform=test_transform)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='cifar10', train=False)
elif args.dataset == 'aug100':
np_test_img_path = f'/generalization_repo_dataset/CIFAR100_Test_AC_6/{args.aug}.npy'
np_test_target_path = '/generalization_repo_dataset/CIFAR100_Test_AC_6/labels_test.npy'
train_data = torchvision.datasets.CIFAR100(
root_path, train=True, transform=test_transform, download=True)
test_data = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, dataset='cifar10', train=False)
elif args.dataset == 'mvtec_ad':
import math
resize=224
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize(math.ceil(resize*1.14)),
torchvision.transforms.CenterCrop(resize),
torchvision.transforms.ToTensor()])
categories = ['bottle', 'carpet', 'grid', 'hazelnut', 'leather', 'metal_nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper']
train_data = MVTecADDataset(root_path, resize=resize, transform=transform, categories=categories, phase='train')
test_data = MVTecADDataset(root_path, resize=resize, transform=transform, categories=categories, phase='test')
# Create sub classes
if args.one_class_idx != None:
if (args.dataset == 'cifar100' or args.dataset == 'aug100' or args.dataset == 'anomaly100'):
train_data.targets = sparse2coarse(train_data.targets)
test_data.targets = sparse2coarse(test_data.targets)
eval_in_train_data = get_subclass_dataset(train_data, args.one_class_idx)
eval_in_data = get_subclass_dataset(test_data, args.one_class_idx)
else:
eval_in_train_data = get_subclass_dataset(train_data, args.one_class_idx)
eval_in_data = get_subclass_dataset(test_data, args.one_class_idx)
return eval_in_train_data, eval_in_data, train_data, test_data
def eval_auc_one_class(eval_in, eval_out, train_features_in, mahal_thresh, net, args):
net = net.to(args.device)
net.eval() # enter valid mode
pred_in = []
pred_out = []
targets_in_list = []
targets_out_list = []
in_features_list = []
out_features_list = []
with torch.no_grad():
for data_in, data_out in zip(eval_in, eval_out):
inputs_in, targets_in = data_in
inputs_out, targets_out = data_out
if args.dataset == 'anomaly':
targets_in_list.extend(targets_in)
targets_out_list.extend(targets_out)
else:
targets_in_list.extend([1 for _ in range(len(targets_in))])
targets_out_list.extend([0 for _ in range(len(targets_out))])
inputs_in , inputs_out = inputs_in.to(args.device) , inputs_out.to(args.device)
preds_in, normal_features = net(inputs_in, True)
preds_out, out_features = net(inputs_out, True)
in_features_list.append(normal_features[-1])
out_features_list.append(out_features[-1])
in_features_list = torch.cat(in_features_list, dim=0)
out_features_list = torch.cat(out_features_list, dim=0)
if args.score == 'mahalanobis':
for in_feature in in_features_list:
pred_in.append(mahalanobis_distance(in_feature, mean, inv_covariance) < mahal_thresh)
for out_feature in out_features_list:
pred_out.append(not (mahalanobis_distance(out_feature, mean, inv_covariance) > mahal_thresh))
targets = torch.cat([torch.tensor(targets_in_list), torch.tensor(targets_out_list)], dim=0)
preds = torch.cat([torch.tensor(pred_in), torch.tensor(pred_out)], dim=0)
auc = roc_auc_score(to_np(targets), to_np(preds))
elif args.score == 'svm':
if args.dataset == 'anomaly':
targets = torch.cat([torch.tensor(targets_in_list), torch.tensor(targets_out_list)], dim=0)
f_list = torch.cat([in_features_list, out_features_list], dim=0)
preds = torch.tensor(args.svm_model.predict(f_list.detach().cpu().numpy()))
preds = (preds + 1)/2
pp = []
for k in range(len(preds)):
if preds[k] == targets[k]:
pp.append(1)
else:
pp.append(0)
pp = torch.tensor(pp)
auc = roc_auc_score(to_np(targets), to_np(pp))
else:
pred_in.append(torch.tensor(args.svm_model.predict(in_features_list.detach().cpu().numpy())==1))
pred_out.append(torch.tensor(args.svm_model.predict(out_features_list.detach().cpu().numpy())==-1))
pred_in = np.concatenate(pred_in)
pred_out = np.concatenate(pred_out)
targets = torch.cat([torch.tensor(targets_in_list), torch.tensor(targets_out_list)], dim=0)
preds = torch.cat([torch.tensor(pred_in), torch.tensor(pred_out)], dim=0)
preds = (preds + 1)/2
auc = roc_auc_score(to_np(targets), to_np(preds))
elif args.score == 'knn':
f_list = torch.cat([in_features_list, out_features_list], dim=0)
distances = knn_score(to_np(train_features_in), to_np(f_list))
targets = torch.cat([torch.tensor(targets_in_list), torch.tensor(targets_out_list)], dim=0)
auc = roc_auc_score(targets, distances)
return auc
def eval_auc_anomaly(loader, train_features_in, net, args):
net = net.to(args.device)
net.eval() # enter valid mode
preds = []
anomaly_list = []
features_list = []
with torch.no_grad():
for inputs, _, anomaly in loader:
anomaly_list.extend(anomaly)
inputs = inputs.to(args.device)
_, normal_features = net(inputs, True)
features_list.append(normal_features[-1])
features_list = torch.cat(features_list, dim=0)
if args.score == 'svm':
preds = torch.tensor(args.svm_model.predict(features_list.detach().cpu().numpy()))
preds = (preds + 1)/2
anomaly_list = [1-x for x in anomaly_list]
auc = roc_auc_score(anomaly_list, preds)
elif args.score == 'knn':
distances = knn_score(to_np(train_features_in), to_np(features_list))
auc = roc_auc_score(anomaly_list, distances)
return auc
def load_model(args):
if args.linear or 'linear_layer_True' in args.model_path:
model = ResNet18(10, True)
else:
model = ResNet18(10)
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), args.learning_rate,
momentum=args.momentum,weight_decay=args.decay)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), args.learning_rate,
weight_decay=args.decay)
else:
raise NotImplemented("Not implemented optimizer!")
if args.model_path:
m = torch.load(args.model_path)
model.load_state_dict(m)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_update_rate, gamma=args.lr_gamma)
criterion = torch.nn.CrossEntropyLoss().to(args.device)
return model, criterion, optimizer, scheduler
def noise_loading(dataset, noise):
if dataset == 'cifar10':
np_test_target_path = 'path_to_genralization_labels'
np_test_root_path = 'path_to_genralization_folder'
elif dataset == 'svhn':
np_test_target_path = 'path_to_genralization_labels'
np_test_root_path = 'path_to_genralization_folder'
test_transform = transforms.Compose([transforms.ToTensor()])
np_test_img_path = np_test_root_path + noise + '.npy'
test_dataset_noise = load_np_dataset(np_test_img_path, np_test_target_path, test_transform, train=False)
return test_dataset_noise
def feature_extraction(loader, net):
print("extracting features...")
net = net.to(args.device)
net.eval() # enter train mode
features = []
with torch.no_grad():
for data_in in loader:
inputs_in, _ = data_in
inputs = inputs_in.to(args.device)
_, normal_features = net(inputs, True)
features.append(normal_features[-1])
features = torch.cat(features, dim=0)
return features
args = parsing()
os.environ['CUDA_VISIBLE_DEVICES']="0,1"
torch.manual_seed(args.seed)
model, criterion, optimizer, scheduler = load_model(args)
root_path = '/warehouse/datasets/KEAD/datasets/data/'
args.last_lr = args.learning_rate
in_distance = torch.tensor(0)
eval_in_train_data, eval_in_data, train_data, test_data = load_data(root_path, args)
eval_in_train = DataLoader(eval_in_train_data, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
eval_in = DataLoader(eval_in_data, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers)
if args.score == 'svm':
from sklearn.svm import OneClassSVM
svm_model = OneClassSVM(kernel='sigmoid', gamma='auto', nu=0.2)
train_features_in = feature_extraction(eval_in_train, model)
print(f"Fitting svm model {train_features_in.shape}")
svm_model.fit(train_features_in.detach().cpu().numpy())
args.svm_model = svm_model
if args.score == 'knn':
train_features_in = feature_extraction(eval_in_train, model)
if args.score == 'mahalanobis':
train_features_in = feature_extraction(eval_in_train, model)
mean, inv_covariance, features = mahalanobis_parameters(train_features_in, args)
if args.noise:
test_dataset_noise = noise_loading(args.dataset, args.noise)
resutls = {}
aucs = []
# resutls['OD']=in_distance.detach().cpu().numpy()
if args.dataset == 'cifar100':
classes=20
else:
classes=10
if args.dataset == 'anomaly' or args.dataset == 'anomaly100' or args.dataset == 'anomalysvhn':
auc = eval_auc_anomaly(eval_in, train_features_in, model, args)
print(f"Anomaly auc is: {auc}")
exit()
if args.one_class_idx != None:
for id in range(classes):
if id == args.one_class_idx:
continue
if args.noise:
eval_out_data = get_subclass_dataset(test_dataset_noise, id)
else:
eval_out_data = get_subclass_dataset(test_data, id)
eval_out = DataLoader(eval_out_data, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers)
if args.dataset == 'anomaly':
auc = eval_auc_anomaly(eval_out, train_features_in, model, args)
else:
auc = eval_auc_one_class(eval_in, eval_out, train_features_in, in_distance + args.thresh, model, args)
aucs.append(auc)
print(f"Evaluation distance on class {id}: auc: {auc}")
else:
if args.noise:
eval_out_data = test_dataset_noise
else:
eval_out_data = test_data
eval_out = DataLoader(eval_out_data, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers)
if args.dataset == 'anomaly':
auc = eval_auc_anomaly(eval_out, train_features_in, model, args)
else:
auc = eval_auc_one_class(eval_in, eval_out, train_features_in, in_distance + args.thresh, model, args)
aucs.append(auc)
print(f"Evaluation distance on class {id}: auc: {auc}")
print(f"Average auc is: {np.mean(aucs)}")
print(f"Results of model: {args.model_path}")
print(f"In class is {args.one_class_idx}")
resutls['avg_auc']=np.mean(aucs)
if args.csv:
import pandas as pd
df = pd.DataFrame(resutls, index=[0])
# Save DataFrame as CSV file
ev = args.model_path.split('_')[1]
save_path = f'./csv_results/{ev}/dataset_{args.dataset}/report_class_{args.one_class_idx}/'
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
df.to_csv(save_path+f"{args.model_path.split('/')[-2]}.csv", index=False)