-
Notifications
You must be signed in to change notification settings - Fork 0
/
TextRankExtractor.hpp
executable file
·190 lines (163 loc) · 6.2 KB
/
TextRankExtractor.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#ifndef CPPJIEBA_TEXTRANK_EXTRACTOR_H
#define CPPJIEBA_TEXTRANK_EXTRACTOR_H
#include <cmath>
#include "Jieba.hpp"
namespace cppjieba {
using namespace limonp;
using namespace std;
class TextRankExtractor {
public:
typedef struct _Word {string word;vector<size_t> offsets;double weight;} Word; // struct Word
private:
typedef std::map<string,Word> WordMap;
class WordGraph{
private:
typedef double Score;
typedef string Node;
typedef std::set<Node> NodeSet;
typedef std::map<Node,double> Edges;
typedef std::map<Node,Edges> Graph;
//typedef std::unordered_map<Node,double> Edges;
//typedef std::unordered_map<Node,Edges> Graph;
double d;
Graph graph;
NodeSet nodeSet;
public:
WordGraph(): d(0.85) {};
WordGraph(double in_d): d(in_d) {};
void addEdge(Node start,Node end,double weight){
Edges temp;
Edges::iterator gotEdges;
nodeSet.insert(start);
nodeSet.insert(end);
graph[start][end]+=weight;
graph[end][start]+=weight;
}
void rank(WordMap &ws,size_t rankTime=10){
WordMap outSum;
Score wsdef, min_rank, max_rank;
if( graph.size() == 0)
return;
wsdef = 1.0 / graph.size();
for(Graph::iterator edges=graph.begin();edges!=graph.end();++edges){
// edges->first start节点;edge->first end节点;edge->second 权重
ws[edges->first].word=edges->first;
ws[edges->first].weight=wsdef;
outSum[edges->first].weight=0;
for(Edges::iterator edge=edges->second.begin();edge!=edges->second.end();++edge){
outSum[edges->first].weight+=edge->second;
}
}
//sort(nodeSet.begin(),nodeSet.end()); 是否需要排序?
for( size_t i=0; i<rankTime; i++ ){
for(NodeSet::iterator node = nodeSet.begin(); node != nodeSet.end(); node++ ){
double s = 0;
for( Edges::iterator edge= graph[*node].begin(); edge != graph[*node].end(); edge++ )
// edge->first end节点;edge->second 权重
s += edge->second / outSum[edge->first].weight * ws[edge->first].weight;
ws[*node].weight = (1 - d) + d * s;
}
}
min_rank=max_rank=ws.begin()->second.weight;
for(WordMap::iterator i = ws.begin(); i != ws.end(); i ++){
if( i->second.weight < min_rank ){
min_rank = i->second.weight;
}
if( i->second.weight > max_rank ){
max_rank = i->second.weight;
}
}
for(WordMap::iterator i = ws.begin(); i != ws.end(); i ++){
ws[i->first].weight = (i->second.weight - min_rank / 10.0) / (max_rank - min_rank / 10.0);
}
}
};
public:
TextRankExtractor(const string& dictPath,
const string& hmmFilePath,
const string& stopWordPath,
const string& userDict = "")
: segment_(dictPath, hmmFilePath, userDict) {
LoadStopWordDict(stopWordPath);
}
TextRankExtractor(const DictTrie* dictTrie,
const HMMModel* model,
const string& stopWordPath)
: segment_(dictTrie, model) {
LoadStopWordDict(stopWordPath);
}
TextRankExtractor(const Jieba& jieba, const string& stopWordPath) : segment_(jieba.GetDictTrie(), jieba.GetHMMModel()) {
LoadStopWordDict(stopWordPath);
}
~TextRankExtractor() {
}
void Extract(const string& sentence, vector<string>& keywords, size_t topN) const {
vector<Word> topWords;
Extract(sentence, topWords, topN);
for (size_t i = 0; i < topWords.size(); i++) {
keywords.push_back(topWords[i].word);
}
}
void Extract(const string& sentence, vector<pair<string, double> >& keywords, size_t topN) const {
vector<Word> topWords;
Extract(sentence, topWords, topN);
for (size_t i = 0; i < topWords.size(); i++) {
keywords.push_back(pair<string, double>(topWords[i].word, topWords[i].weight));
}
}
void Extract(const string& sentence, vector<Word>& keywords, size_t topN, size_t span=5,size_t rankTime=10) const {
vector<string> words;
segment_.Cut(sentence, words);
TextRankExtractor::WordGraph graph;
WordMap wordmap;
size_t offset = 0;
for(size_t i=0; i < words.size(); i++){
size_t t = offset;
offset += words[i].size();
if (IsSingleWord(words[i]) || stopWords_.find(words[i]) != stopWords_.end()) {
continue;
}
for(size_t j=i+1,skip=0;j<i+span+skip && j<words.size();j++){
if (IsSingleWord(words[j]) || stopWords_.find(words[j]) != stopWords_.end()) {
skip++;
continue;
}
graph.addEdge(words[i],words[j],1);
}
wordmap[words[i]].offsets.push_back(t);
}
if (offset != sentence.size()) {
XLOG(ERROR) << "words illegal";
return;
}
graph.rank(wordmap,rankTime);
keywords.clear();
keywords.reserve(wordmap.size());
for (WordMap::iterator itr = wordmap.begin(); itr != wordmap.end(); ++itr) {
keywords.push_back(itr->second);
}
topN = min(topN, keywords.size());
partial_sort(keywords.begin(), keywords.begin() + topN, keywords.end(), Compare);
keywords.resize(topN);
}
private:
void LoadStopWordDict(const string& filePath) {
ifstream ifs(filePath.c_str());
XCHECK(ifs.is_open()) << "open " << filePath << " failed";
string line ;
while (getline(ifs, line)) {
stopWords_.insert(line);
}
assert(stopWords_.size());
}
static bool Compare(const Word &x,const Word &y){
return x.weight > y.weight;
}
MixSegment segment_;
unordered_set<string> stopWords_;
}; // class TextRankExtractor
inline ostream& operator << (ostream& os, const TextRankExtractor::Word& word) {
return os << "{\"word\": \"" << word.word << "\", \"offset\": " << word.offsets << ", \"weight\": " << word.weight << "}";
}
} // namespace cppjieba
#endif