forked from yuyuyzl/EasyVtuber
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
411 lines (333 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import argparse
import cv2
import torch
import pyvirtualcam
import numpy as np
import mediapipe as mp
from PIL import Image
import tha2.poser.modes.mode_20_wx
from models import TalkingAnimeLight
from pose import get_pose
from utils import preprocessing_image, postprocessing_image
import errno
import json
import os
import queue
import socket
import time
import math
from multiprocessing import Value, Process, Queue
import pyanime4k
from pyanime4k import ac
from tha2.mocap.ifacialmocap_constants import *
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true')
parser.add_argument('--extend_movement', type=float)
parser.add_argument('--input', type=str, default='cam')
parser.add_argument('--character', type=str, default='y')
parser.add_argument('--output_dir', type=str)
parser.add_argument('--output_webcam', type=str)
parser.add_argument('--output_size', type=str, default='256x256')
parser.add_argument('--debug_input', action='store_true')
parser.add_argument('--ifm', type=str)
parser.add_argument('--anime4k', action='store_true')
args = parser.parse_args()
args.output_w = int(args.output_size.split('x')[0])
args.output_h = int(args.output_size.split('x')[1])
if args.output_webcam is None and args.output_dir is None: args.debug = True
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def create_default_blender_data():
data = {}
for blendshape_name in BLENDSHAPE_NAMES:
data[blendshape_name] = 0.0
data[HEAD_BONE_X] = 0.0
data[HEAD_BONE_Y] = 0.0
data[HEAD_BONE_Z] = 0.0
data[HEAD_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
data[LEFT_EYE_BONE_X] = 0.0
data[LEFT_EYE_BONE_Y] = 0.0
data[LEFT_EYE_BONE_Z] = 0.0
data[LEFT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
data[RIGHT_EYE_BONE_X] = 0.0
data[RIGHT_EYE_BONE_Y] = 0.0
data[RIGHT_EYE_BONE_Z] = 0.0
data[RIGHT_EYE_BONE_QUAT] = [0.0, 0.0, 0.0, 1.0]
return data
class ClientProcess(Process):
def __init__(self):
super().__init__()
self.queue = Queue()
self.should_terminate = Value('b', False)
self.address = args.ifm.split(':')[0]
self.port = int(args.ifm.split(':')[1])
self.perf_time = 0
def run(self):
udpClntSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
data = "iFacialMocap_sahuasouryya9218sauhuiayeta91555dy3719"
data = data.encode('utf-8')
udpClntSock.sendto(data, (self.address, self.port))
self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.socket.setblocking(False)
self.socket.bind(("", self.port))
self.socket.settimeout(0.1)
while True:
if self.should_terminate.value:
break
try:
socket_bytes = self.socket.recv(8192)
except socket.error as e:
err = e.args[0]
if err == errno.EAGAIN or err == errno.EWOULDBLOCK or err == 'timed out':
continue
else:
raise e
socket_string = socket_bytes.decode("utf-8")
# print(socket_string)
# blender_data = json.loads(socket_string)
data = self.convert_from_blender_data(socket_string)
# cur_time = time.perf_counter()
# fps = 1 / (cur_time - self.perf_time)
# self.perf_time = cur_time
# print(fps)
try:
self.queue.put_nowait(data)
except queue.Full:
pass
self.queue.close()
self.socket.close()
@staticmethod
def convert_from_blender_data(blender_data):
data = {}
for item in blender_data.split('|'):
if item.find('#') != -1:
k, arr = item.split('#')
arr = [float(n) for n in arr.split(',')]
data[k.replace("_L", "Left").replace("_R", "Right")] = arr
elif item.find('-') != -1:
k, v = item.split("-")
data[k.replace("_L", "Left").replace("_R", "Right")] = float(v) / 100
to_rad = 57.3
data[HEAD_BONE_X] = data["=head"][0] / to_rad
data[HEAD_BONE_Y] = data["=head"][1] / to_rad
data[HEAD_BONE_Z] = data["=head"][2] / to_rad
data[HEAD_BONE_QUAT] = [data["=head"][3], data["=head"][4], data["=head"][5], 1]
# print(data[HEAD_BONE_QUAT][2],min(data[EYE_BLINK_LEFT],data[EYE_BLINK_RIGHT]))
data[RIGHT_EYE_BONE_X] = data["rightEye"][0] / to_rad
data[RIGHT_EYE_BONE_Y] = data["rightEye"][1] / to_rad
data[RIGHT_EYE_BONE_Z] = data["rightEye"][2] / to_rad
data[LEFT_EYE_BONE_X] = data["leftEye"][0] / to_rad
data[LEFT_EYE_BONE_Y] = data["leftEye"][1] / to_rad
data[LEFT_EYE_BONE_Z] = data["leftEye"][2] / to_rad
return data
@torch.no_grad()
def main():
model = TalkingAnimeLight().to(device)
model = model.eval()
model = model
print("Pretrained Model Loaded")
img = Image.open(f"character/{args.character}.png")
wRatio = img.size[0] / 256
img = img.resize((256, int(img.size[1] / wRatio)))
input_image = preprocessing_image(img.crop((0, 0, 256, 256))).unsqueeze(0)
extra_image = None
if img.size[1] > 256:
extra_image = np.array(img.crop((0, 256, img.size[0], img.size[1])))
print("Character Image Loaded:", args.character)
ifm_converter = None
cap = None
if not args.debug_input:
if args.ifm is not None:
client_process = ClientProcess()
client_process.daemon = True
client_process.start()
ifm_converter = tha2.poser.modes.mode_20_wx.create_ifacialmocap_pose_converter()
print("IFM Service Running:", args.ifm)
else:
if args.input == 'cam':
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
if ret is None:
raise Exception("Can't find Camera")
else:
cap = cv2.VideoCapture(args.input)
frame_count = 0
os.makedirs(os.path.join('dst', args.character, args.output_dir), exist_ok=True)
print("Webcam Input Running")
facemesh = mp.solutions.face_mesh.FaceMesh(refine_landmarks=True)
if args.output_webcam:
cam_scale = 1
if args.anime4k:
cam_scale = 2
cam = pyvirtualcam.Camera(width=args.output_w * cam_scale, height=args.output_h * cam_scale, fps=30,
backend=args.output_webcam,
fmt=
{'unitycapture': pyvirtualcam.PixelFormat.RGBA, 'obs': pyvirtualcam.PixelFormat.RGB}[
args.output_webcam])
print(f'Using virtual camera: {cam.device}')
a = None
if args.anime4k:
parameters = ac.Parameters()
# enable HDN for ACNet
parameters.HDN = True
# a = ac.AC(
# managerList=ac.ManagerList([ac.CUDAManager(dID=0)]),
# type=ac.ProcessorType.Cuda_ACNet,
# )
a = ac.AC(
managerList=ac.ManagerList([ac.OpenCLACNetManager(pID=0, dID=0)]),
type=ac.ProcessorType.OpenCL_ACNet,
)
a.set_arguments(parameters)
print("Anime4K Loaded")
mouth_eye_vector = torch.empty(1, 27)
pose_vector = torch.empty(1, 3)
# input_image = input_image.half()
# mouth_eye_vector = mouth_eye_vector.half()
# pose_vector = pose_vector.half()
input_image = input_image.to(device)
mouth_eye_vector = mouth_eye_vector.to(device)
pose_vector = pose_vector.to(device)
position_vector = [0, 0, 0, 1]
pose_queue = []
blender_data = create_default_blender_data()
tic=0
print("Ready. Close this console to exit.")
while True:
# ret, frame = cap.read()
# input_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# results = facemesh.process(input_frame)
if args.debug_input:
mouth_eye_vector[0, :] = 0
pose_vector[0, :] = 0
mouth_eye_vector[0, 2] = math.sin(time.perf_counter()*3)
mouth_eye_vector[0, 3] = math.sin(time.perf_counter()*3)
mouth_eye_vector[0, 14] = 0
mouth_eye_vector[0, 25] = math.sin(time.perf_counter()*2.2)*0.2
mouth_eye_vector[0, 26] = math.sin(time.perf_counter()*3.5)*0.8
pose_vector[0, 0] = math.sin(time.perf_counter()*1.1)
pose_vector[0, 1] = math.sin(time.perf_counter()*1.2)
pose_vector[0, 2] = math.sin(time.perf_counter()*1.5)
elif args.ifm is not None:
# get pose from ifm
try:
new_blender_data = blender_data
while not client_process.should_terminate.value and not client_process.queue.empty():
new_blender_data = client_process.queue.get_nowait()
blender_data = new_blender_data
except queue.Empty:
pass
ifacialmocap_pose_converted = ifm_converter.convert(blender_data)
# ifacialmocap_pose = blender_data
#
# eye_l_h_temp = ifacialmocap_pose[EYE_BLINK_LEFT]
# eye_r_h_temp = ifacialmocap_pose[EYE_BLINK_RIGHT]
# mouth_ratio = (ifacialmocap_pose[JAW_OPEN] - 0.10)*1.3
# x_angle = -ifacialmocap_pose[HEAD_BONE_X] * 1.5 + 1.57
# y_angle = -ifacialmocap_pose[HEAD_BONE_Y]
# z_angle = ifacialmocap_pose[HEAD_BONE_Z] - 1.57
#
# eye_x_ratio = (ifacialmocap_pose[EYE_LOOK_IN_LEFT] -
# ifacialmocap_pose[EYE_LOOK_OUT_LEFT] -
# ifacialmocap_pose[EYE_LOOK_IN_RIGHT] +
# ifacialmocap_pose[EYE_LOOK_OUT_RIGHT]) / 2.0 / 0.75
#
# eye_y_ratio = (ifacialmocap_pose[EYE_LOOK_UP_LEFT]
# + ifacialmocap_pose[EYE_LOOK_UP_RIGHT]
# - ifacialmocap_pose[EYE_LOOK_DOWN_RIGHT]
# + ifacialmocap_pose[EYE_LOOK_DOWN_LEFT]) / 2.0 / 0.75
position_vector = blender_data[HEAD_BONE_QUAT]
for i in range(12, 39):
mouth_eye_vector[0, i - 12] = ifacialmocap_pose_converted[i]
for i in range(39, 42):
pose_vector[0, i - 39] = ifacialmocap_pose_converted[i]
else:
ret, frame = cap.read()
input_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = facemesh.process(input_frame)
if results.multi_face_landmarks is None:
continue
facial_landmarks = results.multi_face_landmarks[0].landmark
if args.debug:
pose, debug_image = get_pose(facial_landmarks, frame)
else:
pose = get_pose(facial_landmarks)
if len(pose_queue) < 3:
pose_queue.append(pose)
pose_queue.append(pose)
pose_queue.append(pose)
else:
pose_queue.pop(0)
pose_queue.append(pose)
np_pose = np.average(np.array(pose_queue), axis=0, weights=[0.6, 0.3, 0.1])
eye_l_h_temp = np_pose[0]
eye_r_h_temp = np_pose[1]
mouth_ratio = np_pose[2]
eye_y_ratio = np_pose[3]
eye_x_ratio = np_pose[4]
x_angle = np_pose[5]
y_angle = np_pose[6]
z_angle = np_pose[7]
mouth_eye_vector[0, :] = 0
pose_vector[0, :] = 0
mouth_eye_vector[0, 2] = eye_l_h_temp
mouth_eye_vector[0, 3] = eye_r_h_temp
mouth_eye_vector[0, 14] = mouth_ratio * 1.5
mouth_eye_vector[0, 25] = eye_y_ratio
mouth_eye_vector[0, 26] = eye_x_ratio
pose_vector[0, 0] = (x_angle - 1.5) * 1.6
pose_vector[0, 1] = y_angle * 2.0 # temp weight
pose_vector[0, 2] = (z_angle + 1.5) * 2 # temp weight
output_image = model(input_image, mouth_eye_vector, pose_vector)
postprocessed_image = postprocessing_image(output_image.cpu())
if extra_image is not None:
postprocessed_image = cv2.vconcat([postprocessed_image, extra_image])
k_scale=1
rotate_angle=0
dx=0
dy=0
if args.extend_movement is not None:
k_scale = position_vector[2] * math.sqrt(args.extend_movement) + 1
rotate_angle = -position_vector[0] * 40 * args.extend_movement
dx = position_vector[0] * 400 * k_scale * args.extend_movement
dy = -position_vector[1] * 600 * k_scale * args.extend_movement
rm = cv2.getRotationMatrix2D((128, 128), rotate_angle, k_scale)
rm[0, 2] += dx + args.output_w / 2 - 128
rm[1, 2] += dy + args.output_h / 2 - 128
postprocessed_image = cv2.warpAffine(
postprocessed_image,
rm,
(args.output_w, args.output_h))
if args.anime4k:
alpha_channel = postprocessed_image[:, :, 3]
alpha_channel = cv2.resize(alpha_channel, None, fx=2, fy=2)
# a.load_image_from_numpy(cv2.cvtColor(postprocessed_image, cv2.COLOR_RGBA2RGB), input_type=ac.AC_INPUT_RGB)
# img = cv2.imread("character/test41.png")
img1 = cv2.cvtColor(postprocessed_image, cv2.COLOR_RGBA2BGR)
# a.load_image_from_numpy(img, input_type=ac.AC_INPUT_BGR)
a.load_image_from_numpy(img1, input_type=ac.AC_INPUT_BGR)
a.process()
postprocessed_image = a.save_image_to_numpy()
postprocessed_image = cv2.merge((postprocessed_image, alpha_channel))
postprocessed_image = cv2.cvtColor(postprocessed_image, cv2.COLOR_BGRA2RGBA)
if args.debug:
output_frame = cv2.cvtColor(postprocessed_image, cv2.COLOR_RGBA2BGRA)
# resized_frame = cv2.resize(output_frame, (np.min(debug_image.shape[:2]), np.min(debug_image.shape[:2])))
# output_frame = np.concatenate([debug_image, resized_frame], axis=1)
toc = time.perf_counter()
fps = 1 / (toc - tic)
tic = toc
cv2.putText(output_frame, str('%.1f' % fps),(0,16),cv2.FONT_HERSHEY_PLAIN,1,(0,255,0),1)
cv2.imshow("frame", output_frame)
# cv2.imshow("camera", debug_image)
cv2.waitKey(1)
if args.output_webcam:
# result_image = np.zeros([720, 1280, 3], dtype=np.uint8)
# result_image[720 - 512:, 1280 // 2 - 256:1280 // 2 + 256] = cv2.resize(
# cv2.cvtColor(postprocessing_image(output_image.cpu()), cv2.COLOR_RGBA2RGB), (512, 512))
result_image = postprocessed_image
if args.output_webcam == 'obs':
result_image = cv2.cvtColor(result_image, cv2.COLOR_RGBA2RGB)
cam.send(result_image)
cam.sleep_until_next_frame()
if __name__ == '__main__':
main()