-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathGPT.gs
225 lines (200 loc) · 9.69 KB
/
GPT.gs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// functions to call specifically on ChatGPT using the OpenAIGPT base function
function CHATGPT(text, prompt, systemPrompt='', maxTokens=200, temperature=0.0, model='gpt-3.5-turbo') {
console.log("Executing function: ChatGPT")
return OpenAIGPT(text, prompt, systemPrompt=systemPrompt, maxTokens=maxTokens, temperature=temperature, model=model)
}
// functions to call specifically on GPT-4 using the OpenAIGPT base function
function GPT4(text, prompt, systemPrompt='', maxTokens=200, temperature=0.0, model='gpt-4') {
console.log("Executing function: GPT4")
return OpenAIGPT(text, prompt, systemPrompt=systemPrompt, maxTokens=maxTokens, temperature=temperature, model=model)
}
// base function for OpenAI GPT models with chat format
// this currently is 'gpt-3.5-turbo' (=ChatGPT) and GPT-4 (as of 20.03.2023)
function OpenAIGPT(text, prompt, systemPrompt='', maxTokens=200, temperature=0.0, model='gpt-3.5-turbo') {
// EITHER get the API key from the "API-key" sheet
const apiSheet = SpreadsheetApp.getActiveSpreadsheet().getSheetByName("API-key");
const apiKey = apiSheet.getRange(3,1).getValue() // Cell A3
// OR set API key here in the script
//const apiKey = "..."
// set default system prompt
if (systemPrompt === '') {
systemPrompt = "You are a helpful assistant."
}
Logger.log("System prompt: " + systemPrompt)
// reset default values in case user puts empty string/cell as argument
if (maxTokens === '') {
maxTokens = 200
}
Logger.log("maxTokens: " + maxTokens)
if (temperature === '') {
temperature = 0.0
}
Logger.log("temperature: " + temperature)
// configure the API request to OpenAI
const data = {
"model": model, // "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": systemPrompt},
{"role": "user", "content": text + "\n" + prompt}
],
"temperature": temperature,
"max_tokens": maxTokens,
"n": 1,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
};
const options = {
'method' : 'post',
'contentType': 'application/json',
'payload' : JSON.stringify(data),
'headers': {
Authorization: 'Bearer ' + apiKey,
},
};
const response = UrlFetchApp.fetch(
'https://api.openai.com/v1/chat/completions',
options
);
Logger.log("Model API response: " + response.getContentText());
// Send the API request
const result = JSON.parse(response.getContentText())['choices'][0]['message']['content'];
Logger.log("Content message response: " + result)
// use OpenAI moderation API to block problematic outputs.
// see: https://platform.openai.com/docs/guides/moderation/overview
var optionsModeration = {
'payload' : JSON.stringify({"input": result}),
'method' : 'post',
'contentType': 'application/json',
'headers': {
Authorization: 'Bearer ' + apiKey,
},
}
const responseModeration = UrlFetchApp.fetch(
'https://api.openai.com/v1/moderations',
optionsModeration
);
Logger.log("Moderation API response: " + responseModeration)
// Send the API request for moderation API
const resultFlagged = JSON.parse(responseModeration.getContentText())['results'][0]['flagged'];
Logger.log('Output text flagged? ' + resultFlagged)
// do not return result, if moderation API determined that the result is problematic
if (resultFlagged === true) {
return "The OpenAI moderation API blocked the response."
}
// try parsing the output as JSON or markdown table.
// If JSON, then JSON values are returned across the cells to the right of the selected cell.
// If markdown table, then the table is spread across the cells horizontally and vertically
// If not JSON or markdown table, then the full result is directly returned in a single cell
// JSON attempt
if (result.includes('{') && result.includes('}')) {
// remove boilerplate language before and after JSON/{} in case model outputs characters outside of {} delimiters
// assumes that only one JSON object is returned and it only has one level and is not nested with multiple levels (i.e. not multiple {}{} or {{}})
let cleanedJsonString = '{' + result.split("{")[1].trim()
cleanedJsonString = cleanedJsonString.split("}")[0].trim() + '}'
Logger.log(cleanedJsonString)
// try parsing
try {
// parse JSON
const resultJson = JSON.parse(cleanedJsonString);
Logger.log(resultJson);
// Initialize an empty array to hold the values
const resultJsonValues = [];
// Loop through the object using for...in loop
for (const key in resultJson) {
// Push the value of each key into the array
resultJsonValues.push(resultJson[key]);
Logger.log(key);
Logger.log(resultJson[key])
}
console.log("Final JSON output: " + resultJsonValues)
return [resultJsonValues]
// Just return full response if result not parsable as JSON
} catch (e) {
Logger.log("JSON parsing did not work. Error: " + e);
}
}
// .md table attempt
// determine if table by counting "|" characters. 6 or more
if (result.split("|").length - 1 >= 6) {
let arrayNested = result.split('\n').map(row => row.split('|').map(cell => cell.trim()));
// remove the first and last element of each row, they are always empty strings due to splitting
// this also removes boilerplate language before and after the table
arrayNested = arrayNested.map((array) => array.slice(1, -1));
// remove nested subArray if it is entirely empty. This happens when boilerplate text is separated by a "\n" from the rest of the text
arrayNested = arrayNested.filter((subArr) => subArr.length > 0);
// remove the "---" header indicator
arrayNested = arrayNested.filter((subArr) => true != (subArr[0].includes("---") && subArr[1].includes("---")))
console.log("Final output as array: ", arrayNested)
return arrayNested
}
// if neither JSON nor .md table
console.log("Final output without JSON or .md table: ", result)
return result;
}
// function for rough cost estimates per request
function GPTCOST(model='', maxOutputTokens=100, text='', prompt='', systemPrompt='') {
/*function GPTCOST() {
let text = "Here is some test text. Here is some test text.Here is some test text.Here is some test text.Here is some test text.Here is some test text.Here is some test text."
let prompt = "This is some prompt.Here is some test text.Here is some test text.Here is some test text.Here is some test text."
let systemPrompt = ""
let maxOutputTokens = 200
let model = "gpt-4-32k" //"gpt-3.5-turbo"*/
let inputAll = `${text} ${prompt} ${systemPrompt}`
console.log('Full input string:\n', inputAll)
let inputCharacters = inputAll.length
console.log('Characters:\n', inputCharacters)
// OpenAI
if (model.toLowerCase().includes("gpt")) {
// simple approximation where 1 token === 4 characters (because cannot install tiktoken in Apps Script) https://platform.openai.com/docs/introduction/tokens
let nInputTokens = Math.round(inputCharacters / 4)
// based on the OpenAI cookbook, boilerplate 4+2 tokens needed to be added to each message: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
nInputTokens += 6
console.log("N tokens estimated:\n", nInputTokens)
// cost estimate in USD https://openai.com/pricing
// ChatGPT
if (model.toLowerCase().includes("gpt-3.5-turbo") || model.toLowerCase().includes("chatgpt")) {
let costPerToken = 0.002 / 1000
let costForRequest = costPerToken * (nInputTokens + maxOutputTokens)
costForRequest = +costForRequest.toFixed(4) // round to 4 decimals
console.log("Cost for request in USD:\n", costForRequest)
return costForRequest
// gpt-4 model references: https://platform.openai.com/docs/models/gpt-4
} else if (model.toLowerCase().includes("gpt-4-32k")) {
// for long text 32k token version
let costPerInputToken = 0.06 / 1000
let costPerOutputToken = 0.16 / 1000
let costForRequest = (costPerInputToken * nInputTokens) + (costPerOutputToken * maxOutputTokens)
costForRequest = +costForRequest.toFixed(4) // round to 4 decimals
console.log("Cost for request in USD:\n", costForRequest)
return costForRequest
} else if (model.toLowerCase().includes("gpt-4") || model.toLowerCase().includes("gpt4")) {
// for standard 8k token version
let costPerInputToken = 0.03 / 1000
let costPerOutputToken = 0.06 / 1000
let costForRequest = (costPerInputToken * nInputTokens) + (costPerOutputToken * maxOutputTokens)
costForRequest = +costForRequest.toFixed(4) // round to 4 decimals
console.log("Cost for request in USD:\n", costForRequest)
return costForRequest
} else {
console.log(`Model name ${model} is not supported. Choose one from: gpt-3.5-turbo, gpt-4, gpt-4-32k from the official OpenAI documentation`)
return `Model name ${model} is not supported. Choose one from: gpt-3.5-turbo, gpt-4, gpt-4-32k from the official OpenAI documentation`
}
}
}
// Add ChatGPT Menu
// commenting this out to remove permission requirements for running the function
/*const onOpen = () => {
const ui = SpreadsheetApp.getUi();
ui.createMenu("ChatGPT")
.addItem("This notebook was created by Moritz Laurer. Click here to see the source-code on GitHub.", "openUrl")
// This script was inspired by the great blog post by Sarah Tamsin: https://sarahtamsin.com/integrate-chatgpt-with-google-sheets/
.addToUi();
};
const openUrl = () => {
const url = "https://github.com/MoritzLaurer/ChatGPT-google-sheets";
const html = "<script>window.open('" + url + "', '_blank');google.script.host.close();</script>";
const ui = HtmlService.createHtmlOutput(html);
SpreadsheetApp.getUi().showModalDialog(ui, "Redirecting...");
};
*/