-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNat.hs
executable file
·107 lines (65 loc) · 2.79 KB
/
Nat.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
{-# OPTIONS_GHC -XNPlusKPatterns #-}
-- (c) MP-I (1998/9-2006/7) and CP (2005/6-2018/9)
module Nat where
import Cp
-- (1) Datatype definition -----------------------------------------------------
-- "data Nat = 0 | succ Nat" -- in fact: Haskell Integer is used as carrier type
inNat = either (const 0) succ
outNat 0 = i1 ()
outNat (n+1) = i2 n
-- NB: inNat and outNat are isomorphisms only if restricted to non-negative integers
-- (2) Ana + cata + hylo -------------------------------------------------------
cataNat g = g . recNat (cataNat g) . outNat
recNat f = id -|- f -- this is F f for this datatype
anaNat h = inNat . (recNat (anaNat h) ) . h
hyloNat g h = cataNat g . anaNat h
-- paraNat g = g . recNat (split id (paraNat g)) . outNat
-- (3) Map ---------------------------------------------------------------------
-- (4) Examples ----------------------------------------------------------------
-- (4.1) for is the "fold" of natural numbers
for b i = cataNat (either (const i) b)
somar a = cataNat (either (const a) succ) -- for succ a
multip a = cataNat (either (const 0) (a+)) -- for (a+) 0
exp a = cataNat (either (const 1) (a*)) -- for (a*) 1
-- (4.2) sq (square of a natural number)
sq 0 = 0
sq (n+1) = oddn n + sq n where oddn n = 2*n+1
-- sq = paraNat (either (const 0) g)i
sq' = p1 . aux
-- this is the outcome of calculating sq as a for loop using the
-- mutual recursion law
where aux = cataNat (either (split (const 0)(const 1)) (split (uncurry (+))((2+).p2)))
sq'' n = -- the same as a for loop (putting variables in)
p1 (for body (0,1) n)
where body(s,o) = (s+o,2+o)
-- (4.3) factorial
fac = p2. facfor
facfor = for (split (succ.p1) mul) (1,1)
-- factorial = paraNat (either (const 1) g) where g(n,r) = (n+1) * r
-- (4.4) integer division as an anamorphism --------------
idiv :: Integer -> Integer -> Integer
{-- pointwise
x `wdiv` y | x < y = 0
| x >= y = (x - y) `wdiv` y + 1
--}
idiv = flip aux
aux y = anaNat divide where
divide x | x < y = i1 ()
| x >= y = i2 (x - y)
--- (4.5) bubble sort -----------------------------------
bSort xs = for bubble xs (length xs) where
bubble (x:y:xs)
| x > y = y : bubble (x:xs)
| otherwise = x : bubble (y:xs)
bubble x = x
--- (5) While loop -------------------------------------
{-- pointwise
while p f x | not (p x) = x
| otherwise = while p f (f x)
--}
while :: (a -> Bool) -> (a -> a) -> a -> a
while p f = w where w = (either id id) . (w -|- id) . (f -|- id) . (grd p)
--- (5) Monadic for -------------------------------------
mfor b i 0 = return i
mfor b i (n+1) = do {x <- mfor b i n ; b x}
--- end of Nat.hs ----------------------------------------