forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
table_master_head.py
281 lines (231 loc) · 10 KB
/
table_master_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py
"""
import copy
import math
import paddle
from paddle import nn
from paddle.nn import functional as F
class TableMasterHead(nn.Layer):
"""
Split to two transformer header at the last layer.
Cls_layer is used to structure token classification.
Bbox_layer is used to regress bbox coord.
"""
def __init__(self,
in_channels,
out_channels=30,
headers=8,
d_ff=2048,
dropout=0,
max_text_length=500,
loc_reg_num=4,
**kwargs):
super(TableMasterHead, self).__init__()
hidden_size = in_channels[-1]
self.layers = clones(
DecoderLayer(headers, hidden_size, dropout, d_ff), 2)
self.cls_layer = clones(
DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
self.bbox_layer = clones(
DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
self.cls_fc = nn.Linear(hidden_size, out_channels)
self.bbox_fc = nn.Sequential(
# nn.Linear(hidden_size, hidden_size),
nn.Linear(hidden_size, loc_reg_num),
nn.Sigmoid())
self.norm = nn.LayerNorm(hidden_size)
self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels)
self.positional_encoding = PositionalEncoding(d_model=hidden_size)
self.SOS = out_channels - 3
self.PAD = out_channels - 1
self.out_channels = out_channels
self.loc_reg_num = loc_reg_num
self.max_text_length = max_text_length
def make_mask(self, tgt):
"""
Make mask for self attention.
:param src: [b, c, h, l_src]
:param tgt: [b, l_tgt]
:return:
"""
trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3)
tgt_len = paddle.shape(tgt)[1]
trg_sub_mask = paddle.tril(
paddle.ones(
([tgt_len, tgt_len]), dtype=paddle.float32))
tgt_mask = paddle.logical_and(
trg_pad_mask.astype(paddle.float32), trg_sub_mask)
return tgt_mask.astype(paddle.float32)
def decode(self, input, feature, src_mask, tgt_mask):
# main process of transformer decoder.
x = self.embedding(input) # x: 1*x*512, feature: 1*3600,512
x = self.positional_encoding(x)
# origin transformer layers
for i, layer in enumerate(self.layers):
x = layer(x, feature, src_mask, tgt_mask)
# cls head
for layer in self.cls_layer:
cls_x = layer(x, feature, src_mask, tgt_mask)
cls_x = self.norm(cls_x)
# bbox head
for layer in self.bbox_layer:
bbox_x = layer(x, feature, src_mask, tgt_mask)
bbox_x = self.norm(bbox_x)
return self.cls_fc(cls_x), self.bbox_fc(bbox_x)
def greedy_forward(self, SOS, feature):
input = SOS
output = paddle.zeros(
[input.shape[0], self.max_text_length + 1, self.out_channels])
bbox_output = paddle.zeros(
[input.shape[0], self.max_text_length + 1, self.loc_reg_num])
max_text_length = paddle.to_tensor(self.max_text_length)
for i in range(max_text_length + 1):
target_mask = self.make_mask(input)
out_step, bbox_output_step = self.decode(input, feature, None,
target_mask)
prob = F.softmax(out_step, axis=-1)
next_word = prob.argmax(axis=2, dtype="int64")
input = paddle.concat(
[input, next_word[:, -1].unsqueeze(-1)], axis=1)
if i == self.max_text_length:
output = out_step
bbox_output = bbox_output_step
return output, bbox_output
def forward_train(self, out_enc, targets):
# x is token of label
# feat is feature after backbone before pe.
# out_enc is feature after pe.
padded_targets = targets[0]
src_mask = None
tgt_mask = self.make_mask(padded_targets[:, :-1])
output, bbox_output = self.decode(padded_targets[:, :-1], out_enc,
src_mask, tgt_mask)
return {'structure_probs': output, 'loc_preds': bbox_output}
def forward_test(self, out_enc):
batch_size = out_enc.shape[0]
SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS
output, bbox_output = self.greedy_forward(SOS, out_enc)
output = F.softmax(output)
return {'structure_probs': output, 'loc_preds': bbox_output}
def forward(self, feat, targets=None):
feat = feat[-1]
b, c, h, w = feat.shape
feat = feat.reshape([b, c, h * w]) # flatten 2D feature map
feat = feat.transpose((0, 2, 1))
out_enc = self.positional_encoding(feat)
if self.training:
return self.forward_train(out_enc, targets)
return self.forward_test(out_enc)
class DecoderLayer(nn.Layer):
"""
Decoder is made of self attention, srouce attention and feed forward.
"""
def __init__(self, headers, d_model, dropout, d_ff):
super(DecoderLayer, self).__init__()
self.self_attn = MultiHeadAttention(headers, d_model, dropout)
self.src_attn = MultiHeadAttention(headers, d_model, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
self.sublayer = clones(SubLayerConnection(d_model, dropout), 3)
def forward(self, x, feature, src_mask, tgt_mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](
x, lambda x: self.src_attn(x, feature, feature, src_mask))
return self.sublayer[2](x, self.feed_forward)
class MultiHeadAttention(nn.Layer):
def __init__(self, headers, d_model, dropout):
super(MultiHeadAttention, self).__init__()
assert d_model % headers == 0
self.d_k = int(d_model / headers)
self.headers = headers
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
B = query.shape[0]
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = \
[l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3])
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch
x, self.attn = self_attention(
query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k])
return self.linears[-1](x)
class FeedForward(nn.Layer):
def __init__(self, d_model, d_ff, dropout):
super(FeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class SubLayerConnection(nn.Layer):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SubLayerConnection, self).__init__()
self.norm = nn.LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
def masked_fill(x, mask, value):
mask = mask.astype(x.dtype)
return x * paddle.logical_not(mask).astype(x.dtype) + mask * value
def self_attention(query, key, value, mask=None, dropout=None):
"""
Compute 'Scale Dot Product Attention'
"""
d_k = value.shape[-1]
score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k))
if mask is not None:
# score = score.masked_fill(mask == 0, -1e9) # b, h, L, L
score = masked_fill(score, mask == 0, -6.55e4) # for fp16
p_attn = F.softmax(score, axis=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return paddle.matmul(p_attn, value), p_attn
def clones(module, N):
""" Produce N identical layers """
return nn.LayerList([copy.deepcopy(module) for _ in range(N)])
class Embeddings(nn.Layer):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, *input):
x = input[0]
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Layer):
""" Implement the PE function. """
def __init__(self, d_model, dropout=0., max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = paddle.zeros([max_len, d_model])
position = paddle.arange(0, max_len).unsqueeze(1).astype('float32')
div_term = paddle.exp(
paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model)
pe[:, 0::2] = paddle.sin(position * div_term)
pe[:, 1::2] = paddle.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, feat, **kwargs):
feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512
return self.dropout(feat)