forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ct_fpn.py
185 lines (157 loc) · 5.85 KB
/
ct_fpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
import os
import sys
import math
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
ones_ = Constant(value=1.)
zeros_ = Constant(value=0.)
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))
class Conv_BN_ReLU(nn.Layer):
def __init__(self,
in_planes,
out_planes,
kernel_size=1,
stride=1,
padding=0):
super(Conv_BN_ReLU, self).__init__()
self.conv = nn.Conv2D(
in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias_attr=False)
self.bn = nn.BatchNorm2D(out_planes)
self.relu = nn.ReLU()
for m in self.sublayers():
if isinstance(m, nn.Conv2D):
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
normal_ = Normal(mean=0.0, std=math.sqrt(2. / n))
normal_(m.weight)
elif isinstance(m, nn.BatchNorm2D):
zeros_(m.bias)
ones_(m.weight)
def forward(self, x):
return self.relu(self.bn(self.conv(x)))
class FPEM(nn.Layer):
def __init__(self, in_channels, out_channels):
super(FPEM, self).__init__()
planes = out_channels
self.dwconv3_1 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=1,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer3_1 = Conv_BN_ReLU(planes, planes)
self.dwconv2_1 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=1,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer2_1 = Conv_BN_ReLU(planes, planes)
self.dwconv1_1 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=1,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer1_1 = Conv_BN_ReLU(planes, planes)
self.dwconv2_2 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=2,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer2_2 = Conv_BN_ReLU(planes, planes)
self.dwconv3_2 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=2,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer3_2 = Conv_BN_ReLU(planes, planes)
self.dwconv4_2 = nn.Conv2D(
planes,
planes,
kernel_size=3,
stride=2,
padding=1,
groups=planes,
bias_attr=False)
self.smooth_layer4_2 = Conv_BN_ReLU(planes, planes)
def _upsample_add(self, x, y):
return F.upsample(x, scale_factor=2, mode='bilinear') + y
def forward(self, f1, f2, f3, f4):
# up-down
f3 = self.smooth_layer3_1(self.dwconv3_1(self._upsample_add(f4, f3)))
f2 = self.smooth_layer2_1(self.dwconv2_1(self._upsample_add(f3, f2)))
f1 = self.smooth_layer1_1(self.dwconv1_1(self._upsample_add(f2, f1)))
# down-up
f2 = self.smooth_layer2_2(self.dwconv2_2(self._upsample_add(f2, f1)))
f3 = self.smooth_layer3_2(self.dwconv3_2(self._upsample_add(f3, f2)))
f4 = self.smooth_layer4_2(self.dwconv4_2(self._upsample_add(f4, f3)))
return f1, f2, f3, f4
class CTFPN(nn.Layer):
def __init__(self, in_channels, out_channel=128):
super(CTFPN, self).__init__()
self.out_channels = out_channel * 4
self.reduce_layer1 = Conv_BN_ReLU(in_channels[0], 128)
self.reduce_layer2 = Conv_BN_ReLU(in_channels[1], 128)
self.reduce_layer3 = Conv_BN_ReLU(in_channels[2], 128)
self.reduce_layer4 = Conv_BN_ReLU(in_channels[3], 128)
self.fpem1 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
self.fpem2 = FPEM(in_channels=(64, 128, 256, 512), out_channels=128)
def _upsample(self, x, scale=1):
return F.upsample(x, scale_factor=scale, mode='bilinear')
def forward(self, f):
# # reduce channel
f1 = self.reduce_layer1(f[0]) # N,64,160,160 --> N, 128, 160, 160
f2 = self.reduce_layer2(f[1]) # N, 128, 80, 80 --> N, 128, 80, 80
f3 = self.reduce_layer3(f[2]) # N, 256, 40, 40 --> N, 128, 40, 40
f4 = self.reduce_layer4(f[3]) # N, 512, 20, 20 --> N, 128, 20, 20
# FPEM
f1_1, f2_1, f3_1, f4_1 = self.fpem1(f1, f2, f3, f4)
f1_2, f2_2, f3_2, f4_2 = self.fpem2(f1_1, f2_1, f3_1, f4_1)
# FFM
f1 = f1_1 + f1_2
f2 = f2_1 + f2_2
f3 = f3_1 + f3_2
f4 = f4_1 + f4_2
f2 = self._upsample(f2, scale=2)
f3 = self._upsample(f3, scale=4)
f4 = self._upsample(f4, scale=8)
ff = paddle.concat((f1, f2, f3, f4), 1) # N,512, 160,160
return ff