forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fpn_unet.py
97 lines (79 loc) · 3.21 KB
/
fpn_unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/necks/fpn_unet.py
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class UpBlock(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
assert isinstance(in_channels, int)
assert isinstance(out_channels, int)
self.conv1x1 = nn.Conv2D(
in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.conv3x3 = nn.Conv2D(
in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.deconv = nn.Conv2DTranspose(
out_channels, out_channels, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = F.relu(self.conv1x1(x))
x = F.relu(self.conv3x3(x))
x = self.deconv(x)
return x
class FPN_UNet(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
assert len(in_channels) == 4
assert isinstance(out_channels, int)
self.out_channels = out_channels
blocks_out_channels = [out_channels] + [
min(out_channels * 2**i, 256) for i in range(4)
]
blocks_in_channels = [blocks_out_channels[1]] + [
in_channels[i] + blocks_out_channels[i + 2] for i in range(3)
] + [in_channels[3]]
self.up4 = nn.Conv2DTranspose(
blocks_in_channels[4],
blocks_out_channels[4],
kernel_size=4,
stride=2,
padding=1)
self.up_block3 = UpBlock(blocks_in_channels[3], blocks_out_channels[3])
self.up_block2 = UpBlock(blocks_in_channels[2], blocks_out_channels[2])
self.up_block1 = UpBlock(blocks_in_channels[1], blocks_out_channels[1])
self.up_block0 = UpBlock(blocks_in_channels[0], blocks_out_channels[0])
def forward(self, x):
"""
Args:
x (list[Tensor] | tuple[Tensor]): A list of four tensors of shape
:math:`(N, C_i, H_i, W_i)`, representing C2, C3, C4, C5
features respectively. :math:`C_i` should matches the number in
``in_channels``.
Returns:
Tensor: Shape :math:`(N, C, H, W)` where :math:`H=4H_0` and
:math:`W=4W_0`.
"""
c2, c3, c4, c5 = x
x = F.relu(self.up4(c5))
x = paddle.concat([x, c4], axis=1)
x = F.relu(self.up_block3(x))
x = paddle.concat([x, c3], axis=1)
x = F.relu(self.up_block2(x))
x = paddle.concat([x, c2], axis=1)
x = F.relu(self.up_block1(x))
x = self.up_block0(x)
return x