-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path\
204 lines (183 loc) · 5.62 KB
/
\
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
from netcal.scaling import TemperatureScaling
from netcal.metrics import ECE
from netcal.binning import HistogramBinning, IsotonicRegression, ENIR, BBQ
from netcal.scaling import LogisticCalibration, TemperatureScaling, BetaCalibration
from netcal.metrics import ACE, ECE, MCE
from netcal.presentation import ReliabilityDiagram
import matplotlib.pyplot as plt
import lstm
def main(step, testpath, validpath):
data = {}
data["sft"] = []
data["lbl"] = []
data_vali = {}
data_vali["sft"] = {}
data_vali["lbl"] = {}
(
data["sft"][step],
data["lbl"][step],
data_vali["sft"][step],
data_vali["lbl"][step],
) = lstm.eval_train_cc(
csv_path="../safety_detection_labeled_data/Safety_Detection_Labeled.csv",
images_folder="../safety_detection_labeled_data/",
vae_weights="vae_weights.pth",
lstm_weights=f"lstm_weights{step}.pth",
seq_len=32,
horizon=step,
load_lstm_weights=True,
load_d=True,
data=None,
device="cpu",
)
n_bins = 10
bins = 10
hist_bins = 20
ece = ECE(n_bins)
# data_vali = np.load(testpath)
# data = np.load(validpath)
totalsft = data["lbl"]
build_set_sm = data["sft"][step]
build_set_gt = data["lbl"][step]
sft_vali = data_vali["sft"][step]
lbl_vali = data_vali["lbl"][step]
confidences = sft_vali
ground_truth = lbl_vali
temperature = TemperatureScaling()
histogram = HistogramBinning(hist_bins)
iso = IsotonicRegression()
bbq = BBQ()
enir = ENIR()
method = "mle"
lr_calibration = LogisticCalibration(detection=False, method=method)
temperature = TemperatureScaling(detection=False, method=method)
betacal = BetaCalibration(detection=False, method=method)
models = [
("hist", histogram),
("iso", iso),
("bbq", bbq),
("enir", enir),
("lr", lr_calibration),
("temperature", temperature),
("beta", betacal),
]
ace = ACE(bins)
ece = ECE(bins)
mce = MCE(bins)
validation_set_sm = confidences
validation_set_gt = ground_truth
predictions = []
all_ace = [ace.measure(validation_set_sm, validation_set_gt)]
all_ece = [ece.measure(validation_set_sm, validation_set_gt)]
all_mce = [mce.measure(validation_set_sm, validation_set_gt)]
for model in models:
name, instance = model
print("Build %s model" % name)
instance.fit(build_set_sm, build_set_gt)
for model in models:
_, instance = model
prediction = instance.transform(validation_set_sm)
predictions.append(prediction)
all_ace.append(ace.measure(prediction, validation_set_gt))
all_ece.append(ece.measure(prediction, validation_set_gt))
all_mce.append(mce.measure(prediction, validation_set_gt))
x = [0, 1, 2, 3, 4, 5, 6, 7]
# plt.plot(x, all_ece, x, all_mce)
plt.plot(
x,
all_ece,
)
plt.show()
print(all_ece)
print(all_mce)
bins2 = np.linspace(0.1, 1, bins)
diagram = ReliabilityDiagram(bins=bins, title_suffix="default")
diagram.plot(
validation_set_sm,
validation_set_gt,
filename="./" + str(step) + "test" + str(all_ece[0]) + ".png",
)
method_num = np.argmin(all_ece)
print(method_num)
diagram = ReliabilityDiagram(bins=bins, title_suffix=models[method_num][0])
prediction = predictions[method_num]
diagram.plot(
prediction,
validation_set_gt,
filename="./"
+ str(step)
+ "step"
+ str(method_num)
+ "-"
+ str(all_ece[method_num])
+ ".png",
)
binned = np.digitize(prediction, bins2)
dset = []
binsamount = []
for i in range(10):
posi = list(np.where(binned == i))[0]
binsamount.append(len(posi))
if len(posi) > 30:
dsubset = []
for im in range(200):
temp_cali = []
temp_gt = []
for jm in range(1000):
inumber = np.random.randint(0, len(posi))
temp_cali.append(prediction[inumber])
temp_gt.append(validation_set_gt[inumber])
temp_cali = np.array(temp_cali)
temp_gt = np.array(temp_gt)
mu_cali = np.mean(temp_cali)
mu_gt = np.mean(temp_gt)
dsubset.append(abs(mu_cali - mu_gt))
dsubset_np = np.array(dsubset)
dsubset_np = np.sort(dsubset_np)
dset.append(dsubset_np)
else:
dset.append(0)
# ki = (1-0.9)*(1+ni/2)
print(binsamount)
np.savez_compressed(
str(step) + "k95200.npz",
dset=dset,
lbl=validation_set_gt,
cali=prediction,
ori=validation_set_sm,
ece=all_ece,
mce=all_mce,
number=method_num,
)
print("end")
return all_ece[0], all_ece[method_num], all_ace[0], all_ace[method_num]
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="conformal calibration")
parser.add_argument(
"--valid",
)
parser.add_argument(
"--test",
)
args = parser.parse_args()
valid_path = args.valid
test_path = args.test
testpath = test_path
validpath = valid_path
ece = []
ece2 = []
mce = []
mce2 = []
for i in range(10, 91, 10):
print(i)
a, b, c, d = main(i, testpath, validpath)
ece2.append(b)
mce2.append(d)
ece.append(a)
ece.append(c)
print(ece)
print(ece2)
print(mce)
print(mce2)