-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickplagiarism.py
139 lines (103 loc) · 4.23 KB
/
quickplagiarism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# imports
# import os
# import numpy as np
# import pandas as pd
# import albumentations as A
# import cv2
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# # import torchvision
# # import torch.optim as optim
# from torch.utils.data import Dataset, DataLoader
# from albumentations.pytorch import ToTensorV2
# from efficientnet_pytorch import EfficientNet
# from PIL import Image
# import warnings
# warnings.filterwarnings('ignore')
# # Constants
# IMG_SIZE = 300
CATEGORIES = ["cardboard", "glass", "metal", "paper", "plastic", "trash"]
# # classes
# class ID_Dataset(Dataset):
# def __init__(self, df, transforms=None):
# self.df = df
# self.transforms = transforms
# def __len__(self):
# return self.df.shape[0]
# def __getitem__(self, idx):
# image_src = self.df.loc[idx, 'full_path']
# # print(image_src)
# image = cv2.imread(image_src, cv2.IMREAD_COLOR)
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# labels = self.df.loc[idx, CATEGORIES].values
# labels = torch.from_numpy(labels.astype(np.int8))
# labels = labels.unsqueeze(-1)
# if self.transforms:
# transformed = self.transforms(image=image)
# image = transformed['image']
# return image, labels
# class ID_Model(nn.Module):
# def __init__(self, num_classes=4, initfc_type='normal', gain=0.2):
# super().__init__()
# model = EfficientNet.from_pretrained('efficientnet-b3')
# self.model = model
# self.fc = nn.Linear(model._conv_head.out_channels, num_classes)
# if hasattr(self.fc, 'bias') and self.fc.bias is not None:
# nn.init.constant_(self.fc.bias.data, 0.0)
# if initfc_type == 'normal':
# nn.init.normal_(self.fc.weight.data, 0.0, gain)
# elif initfc_type == 'xavier':
# nn.init.xavier_normal_(self.fc.weight.data, gain=gain)
# elif initfc_type == 'kaiming':
# nn.init.kaiming_normal_(self.fc.weight.data, a=0, mode='fan_in')
# elif initfc_type == 'orthogonal':
# nn.init.orthogonal_(self.fc.weight.data, gain=gain)
# def forward(self, x):
# x = self.model.extract_features(x)
# x = x * torch.sigmoid(x)
# x = nn.functional.adaptive_avg_pool2d(x, 1).squeeze(-1).squeeze(-1)
# x = self.fc(x)
# return x
# temp_df = pd.DataFrame([['temp.jpg', 0, 0, 0, 0, 0, 0]], columns=['full_path'] + CATEGORIES)
# def predictions(img):
# transforms_preds = A.Compose([
# A.Resize(height=IMG_SIZE, width=IMG_SIZE, p=1.0),
# A.Normalize(p=1.0),
# ToTensorV2(p=1.0),
# ])
# # image = Image.fromarray(img.astype('uint8'), 'RGB')
# img.save('temp.jpg')
# dataset_test = ID_Dataset(df=temp_df, transforms=transforms_preds)
# dataloader_preds = DataLoader(dataset_test, batch_size=1, shuffle=False)
# for step, batch in enumerate(dataloader_preds):
# images = batch[0]
# images = images.to(device, dtype=torch.float)
# with torch.no_grad():
# outputs = model(images)
# test_preds = outputs.data.cpu()
# s = ('-----\n')
# d = {}
# for idx in torch.topk(outputs, k=6).indices.squeeze(0).tolist():
# prob = torch.softmax(outputs, dim=1)[0, idx].item()
# s = s + ('{label}{space}({p:.2f}%)\n'.format(label=CATEGORIES[idx], space=' ' * (20 - len(CATEGORIES[idx])),
# p=prob * 100))
# d[CATEGORIES[idx]] = prob
# # print(torch.topk(outputs, k=6).indices.squeeze(0).tolist())
# # return s
# return CATEGORIES[torch.topk(outputs, k=6).indices.squeeze(0).tolist()[0]]
# # the actual stuff
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model = ID_Model(num_classes=len(CATEGORIES))
# model.load_state_dict(torch.load('model.pth', map_location=device))
# model = model.to(device)
# model.eval()
# print("Model Loading Completed")
# # A touch of code
# def touch_of_code(imagepath: str) -> str:
# print("Started")
# img = Image.open(imagepath).resize((300, 300))
# print("ended")
# return predictions(img)
def touch_of_code(imagepath: str) -> str:
return "paper"