-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvideodataset.py
146 lines (131 loc) · 5.29 KB
/
videodataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#%%
import tensorflow as tf
import tensorflow.keras
# import tensorflow_datasets as tfds
# from tfds.features import Video
import numpy as np
import pathlib
import glob2
import time
import cv2
import sys
import os
self_dir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(self_dir)
import matplotlib.pyplot as plt
from srgan.config import *
from config2 import *
def _preprocess_image(feature):
img = feature['image']
img = tf.cast(img, tf.float32)
img /= 255.0
feature['image'] = img
return feature
class FrameGenerator():
def __init__(self, videoPaths, iteration_size, isTest=False):
self.videoPaths = videoPaths
print('getting vids')
self.videos = [cv2.VideoCapture(path) for path in videoPaths]
self.totalFrames = np.array([vid.get(cv2.CAP_PROP_FRAME_COUNT) for vid in self.videos]).astype(np.int)
self.iteration_size = iteration_size
self.ind_vid = np.arange(len(self.videos[:-1])) # keep the last as test set
np.random.seed(0)
np.random.shuffle(self.ind_vid)
self.isTest = isTest
if self.isTest:
self.i_vid = -1
else:
self.i_vid = 0
def call(self):
if self.isTest:
i_vid = self.i_vid
else:
i_vid = self.ind_vid[self.i_vid]
vid = self.videos[i_vid]
n_frames = min(self.iteration_size, self.totalFrames[i_vid])
idx_frame = np.random.choice(self.totalFrames[i_vid], n_frames, replace=False) # random n frames that are different than each other
idx_frame = sorted(idx_frame) # read in order to reduce latency introduced by random access
for i in range(n_frames):
print('idx:', idx_frame[i], i, len(idx_frame), self.totalFrames[i_vid])
vid.set(cv2.CAP_PROP_POS_FRAMES, idx_frame[i]) # set video to this frame
# yield {
# 'video_index': i_vid,
# 'video_path': self.videoPaths[i_vid],
# 'frame': vid.read()[1]
# }
img = vid.read()[1]
# img = cv2.blur(img,(5,5))
yield img
if not self.isTest:
self.i_vid = (self.i_vid + 1) % (len(self.ind_vid))
class FrameGeneratorInterleaved():
def __init__(self, videoPaths, iteration_size, isTest=False):
self.videoPaths = videoPaths
print('getting vids')
self.videos = np.array([cv2.VideoCapture(path) for path in videoPaths])
self.totalFrames = np.array([vid.get(cv2.CAP_PROP_FRAME_COUNT) for vid in self.videos]).astype(np.int)
self.videos = self.videos[self.totalFrames > 0]
self.totalFrames = self.totalFrames[self.totalFrames > 0]
self.iteration_size = iteration_size
self.ind_vid = np.arange(len(self.videos))
np.random.seed(0)
np.random.shuffle(self.ind_vid)
self.n_frames = [min(self.iteration_size, self.totalFrames[i]) for i in range(len(self.videos))]
self.idx_frame = [np.random.choice(self.totalFrames[i], self.totalFrames[i], replace=False) for i in range(len(self.videos))] # random n frames that are different than each other
self.idx_frame = [sorted(_idx_frame) for _idx_frame in self.idx_frame] # read in order to reduce latency introduced by random access
self.isTest = isTest
if isTest:
self.i_frame = np.array([-15]*len(self.videos)).astype(np.int) # last 15 images are reserved for test, and 5 frames are skipped
else:
self.i_frame = np.zeros(len(self.videos)).astype(np.int) # keep track of current index of each frame in each video
self.i_vid = 0
def call(self):
for i in range(self.iteration_size):
i_vid = self.ind_vid[self.i_vid]
i_frame = self.idx_frame[i_vid][self.i_frame[i_vid]]
vid = self.videos[i_vid]
vid.set(cv2.CAP_PROP_POS_FRAMES, self.idx_frame[i_vid][i_frame]) # set video to this frame
img = vid.read()[1]
# img = cv2.blur(img,(5,5))
if self.isTest:
self.i_frame[i_vid] = ((self.i_frame[i_vid] + 15 + 1) % 15) - 15 # last 15 images are reserved for test
else:
self.i_frame[i_vid] = (self.i_frame[i_vid] + 1) % (len(self.i_frame) - 20) # last 15 images are reserved for test
self.i_vid =(self.i_vid + 1) % (len(self.ind_vid))
yield img
class FrameGenerator_sequential():
def __init__(self, videoPaths):
self.videoPaths = videoPaths
print('getting vids')
self.videos = [cv2.VideoCapture(path) for path in videoPaths]
self.totalFrames = np.array([vid.get(cv2.CAP_PROP_FRAME_COUNT) for vid in self.videos]).astype(np.int)
print('self.totalFrames: ', self.totalFrames)
self.i_vid = 0
def call(self):
i_vid = self.i_vid
vid = self.videos[i_vid]
n_frames = self.totalFrames[i_vid]
for i in range(1800, 100000):
vid.set(cv2.CAP_PROP_POS_FRAMES, i) # set video to this frame
# yield {
# 'video_index': i_vid,
# 'video_path': self.videoPaths[i_vid],
# 'frame': vid.read()[1]
# }
img = vid.read()[1]
# img = cv2.blur(img,(5,5))
yield img
self.i_vid += 1 (self.i_vid + 1) % n_frames
if __name__ == "__main__":
videoPaths = np.array(glob2.glob(virat.ground.video.dir + '/*.mp4'))
generator = FrameGenerator(videoPaths, iteration_size=96)
# dataset = tf.data.Dataset.from_generator(generator.call, output_types={'video_index': tf.float32, 'video_path': tf.string, 'frame': tf.uint8})
dataset = tf.data.Dataset.from_generator(generator.call, output_types=(tf.float32)).batch(8)
start_time = time.time()
for sample in dataset.take(96):
print('got sample')
# plt.figure()
# plt.title(f"index: {sample['video_index'].numpy()}, path: {sample['video_path'].numpy()}")
# plt.imshow(sample['frame'])
elapsed_time = time.time() - start_time
print('elapsed_time: ', elapsed_time)