-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
216 lines (173 loc) · 7.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from __future__ import absolute_import
import argparse
import boto3
import copy
import mmcv
import os
import os.path as osp
import random as rd
import subprocess
import sys
import time
import time
import torch
import torch.distributed as dist
import warnings
from mmcv.cnn.utils import revert_sync_batchnorm
from mmcv.runner import get_dist_info, init_dist
from mmcv.utils import Config, DictAction, get_git_hash
from mmseg import __version__
from mmseg.apis import init_random_seed, set_random_seed, train_segmentor
from mmseg.datasets import build_dataset
from mmseg.models import build_segmentor
from mmseg.utils import collect_env, get_device, get_root_logger, setup_multi_processes
from utils import print_files_in_path, save_model_artifacts
ROLE_ARN = os.environ.get('ROLE_ARN')
ROLE_NAME = os.environ.get('ROLE_NAME')
def assumed_role_session():
# Assume the "notebookAccessRole" role we created using AWS CDK.
client = boto3.client('sts')
# creds = client.assume_role(RoleArn=ROLE_ARN, RoleSessionName=ROLE_NAME)['Credentials']
return boto3.session.Session(
# aws_access_key_id=creds['AccessKeyId'],
# aws_secret_access_key=creds['SecretAccessKey'],
# aws_session_token=creds['SessionToken'],
# region_name='us-east-1',
)
def download_data(data, split):
split_folder = f"/opt/ml/data/{split}"
if not (os.path.exists(split_folder)):
os.makedirs(split_folder)
session = assumed_role_session()
s3_connection = session.resource('s3')
splits = data.split('/')
bucket_name = splits[2]
bucket = s3_connection.Bucket(bucket_name)
objects = list(bucket.objects.filter(Prefix="/".join(splits[3:] + [split])))
print("Downloading files.")
for iter_object in objects:
splits = iter_object.key.split('/')
if splits[-1]:
filename = f"{split_folder}/{splits[-1]}"
bucket.download_file(iter_object.key, filename)
print("Finished downloading files.")
def train():
# print("\nList of files in train channel: ")
# print_files_in_path(os.environ.get("SM_CHANNEL_TRAIN"))
# print("\nList of files in validation channel: ")
# print_files_in_path(os.environ.get("SM_CHANNEL_VALIDATION"))
# print("\nList of files in Test channel: ")
# print_files_in_path(os.environ.get("SM_CHANNEL_TEST"))
config_file = os.environ.get('CONFIG_FILE')
print(f'\n config file: {config_file}')
print(f"Environment variables: {os.environ}")
# Dummy net.
net = None
# download and prepare data for training:
for split in ['training', 'validation', 'test', 'configs', 'models']:
download_data(os.environ.get('S3_URL'), split)
# for root, dirs, files in os.walk("/opt/ml/data", topdown=False):
# for name in files:
# print("files:", os.path.join(root, name))
# for name in dirs:
# print("files:", os.pvimath.join(root, name))
# subprocess.run(f"mim train mmsegmentation {config_file} --launcher pytorch --gpus 1".split(' '))
# set random seeds
cfg = Config.fromfile(config_file)
cfg.device = get_device()
seed = init_random_seed(10, device=cfg.device)
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
model_path = f"/opt/ml/code/{os.environ['VERSION']}/{os.environ['EVENT_TYPE']}/"
os.makedirs(model_path)
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
logger.info(f'Set random seed to {seed}')
set_random_seed(seed, deterministic=True)
cfg.seed = seed
os.environ['RANK'] = str(torch.cuda.device_count())
os.environ['WORLD_SIZE'] = '1'
os.environ['MASTER_PORT'] = str(rd.randint(20000, 30000))
os.environ['MASTER_ADDR'] = '127.0.0.1'
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
if cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(config_file))[0])
cfg.gpu_ids = range(1)
distributed = False
print('#######', cfg.dist_params)
# init_dist('pytorch', **cfg.dist_params)
# gpu_ids is used to calculate iter when resuming checkpoint
# _, world_size = get_dist_info()
# cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(config_file)))
# set multi-process settings
setup_multi_processes(cfg)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([f'{k}: {v}' for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line)
meta['env_info'] = env_info
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
meta['seed'] = seed
meta['exp_name'] = osp.basename(config_file)
model = build_segmentor(cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg'))
model.init_weights()
# SyncBN is not support for DP
if not distributed:
warnings.warn(
'SyncBN is only supported with DDP. To be compatible with DP, '
'we convert SyncBN to BN. Please use dist_train.sh which can '
'avoid this error.'
)
model = revert_sync_batchnorm(model)
logger.info(model)
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset.pipeline = cfg.data.train.pipeline
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmseg version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmseg_version=f'{__version__}+{get_git_hash()[:7]}',
config=cfg.pretty_text,
CLASSES=datasets[0].CLASSES,
PALETTE=datasets[0].PALETTE,
)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
# passing checkpoint meta for saving best checkpoint
meta.update(cfg.checkpoint_config.meta)
train_segmentor(
model, datasets, cfg, distributed=distributed, validate=True, timestamp=timestamp, meta=meta
)
# At the end of the training loop, we have to save model artifacts.
model_dir = os.environ["MODEL_DIR"]
session = assumed_role_session()
s3_connection = session.resource('s3')
save_model_artifacts(s3_connection, model_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# sagemaker-containers passes hyperparameters as arguments
parser.add_argument("--hp1", type=str)
parser.add_argument("--hp2", type=int, default=50)
parser.add_argument("--hp3", type=float, default=0.1)
# This is a way to pass additional arguments when running as a script
# and use sagemaker-containers defaults to set their values when not specified.
parser.add_argument("--train", type=str, default=os.environ.get("SM_CHANNEL_TRAIN"))
parser.add_argument("--validation", type=str, default=os.environ.get("SM_CHANNEL_VALIDATION"))
args = parser.parse_args()
train()