forked from xdit-project/xDiT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhunyuan_video_usp_example.py
326 lines (267 loc) · 13.2 KB
/
hunyuan_video_usp_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# from https://github.com/chengzeyi/ParaAttention/blob/main/examples/run_hunyuan_video.py
import functools
from typing import Any, Dict, Union, Optional
import logging
import time
import torch
from diffusers import DiffusionPipeline, HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils import scale_lora_layers, unscale_lora_layers, USE_PEFT_BACKEND
from diffusers.utils import export_to_video
from xfuser import xFuserArgs
from xfuser.config import FlexibleArgumentParser
from xfuser.core.distributed import (
get_world_group,
get_data_parallel_world_size,
get_data_parallel_rank,
get_runtime_state,
get_classifier_free_guidance_world_size,
get_classifier_free_guidance_rank,
get_cfg_group,
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
get_sp_group,
is_dp_last_group,
initialize_runtime_state,
get_pipeline_parallel_world_size,
)
from xfuser.model_executor.layers.attention_processor import xFuserHunyuanVideoAttnProcessor2_0
assert xFuserHunyuanVideoAttnProcessor2_0 is not None
def parallelize_transformer(pipe: DiffusionPipeline):
transformer = pipe.transformer
@functools.wraps(transformer.__class__.forward)
def new_forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
pooled_projections: torch.Tensor,
guidance: torch.Tensor = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logging.warning("Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective.")
batch_size, num_channels, num_frames, height, width = hidden_states.shape
assert batch_size % get_classifier_free_guidance_world_size(
) == 0, f"Cannot split dim 0 of hidden_states ({batch_size}) into {get_classifier_free_guidance_world_size()} parts."
p, p_t = self.config.patch_size, self.config.patch_size_t
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p
# 1. RoPE
image_rotary_emb = self.rope(hidden_states)
# 2. Conditional embeddings
temb = self.time_text_embed(timestep, guidance, pooled_projections)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states,
timestep,
encoder_attention_mask)
hidden_states = hidden_states.reshape(batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1)
hidden_states = hidden_states.flatten(1, 3)
hidden_states = torch.chunk(hidden_states,
get_classifier_free_guidance_world_size(),
dim=0)[get_classifier_free_guidance_rank()]
hidden_states = torch.chunk(hidden_states,
get_sequence_parallel_world_size(),
dim=-2)[get_sequence_parallel_rank()]
encoder_attention_mask = encoder_attention_mask[0].to(torch.bool)
encoder_hidden_states_indices = torch.arange(
encoder_hidden_states.shape[1],
device=encoder_hidden_states.device)
encoder_hidden_states_indices = encoder_hidden_states_indices[
encoder_attention_mask]
encoder_hidden_states = encoder_hidden_states[
..., encoder_hidden_states_indices, :]
if encoder_hidden_states.shape[-2] % get_sequence_parallel_world_size(
) != 0:
get_runtime_state().split_text_embed_in_sp = False
else:
get_runtime_state().split_text_embed_in_sp = True
encoder_hidden_states = torch.chunk(
encoder_hidden_states,
get_classifier_free_guidance_world_size(),
dim=0)[get_classifier_free_guidance_rank()]
if get_runtime_state().split_text_embed_in_sp:
encoder_hidden_states = torch.chunk(
encoder_hidden_states,
get_sequence_parallel_world_size(),
dim=-2)[get_sequence_parallel_rank()]
freqs_cos, freqs_sin = image_rotary_emb
def get_rotary_emb_chunk(freqs):
freqs = torch.chunk(freqs, get_sequence_parallel_world_size(), dim=0)[get_sequence_parallel_rank()]
return freqs
freqs_cos = get_rotary_emb_chunk(freqs_cos)
freqs_sin = get_rotary_emb_chunk(freqs_sin)
image_rotary_emb = (freqs_cos, freqs_sin)
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False}
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
None,
image_rotary_emb,
**ckpt_kwargs,
)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
temb,
None,
image_rotary_emb,
**ckpt_kwargs,
)
else:
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states, encoder_hidden_states, temb, None,
image_rotary_emb)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states, encoder_hidden_states, temb, None,
image_rotary_emb)
# 5. Output projection
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = get_sp_group().all_gather(hidden_states, dim=-2)
hidden_states = get_cfg_group().all_gather(hidden_states, dim=0)
hidden_states = hidden_states.reshape(batch_size,
post_patch_num_frames,
post_patch_height,
post_patch_width, -1, p_t, p, p)
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states, )
return Transformer2DModelOutput(sample=hidden_states)
new_forward = new_forward.__get__(transformer)
transformer.forward = new_forward
for block in transformer.transformer_blocks + transformer.single_transformer_blocks:
block.attn.processor = xFuserHunyuanVideoAttnProcessor2_0()
def main():
parser = FlexibleArgumentParser(description="xFuser Arguments")
args = xFuserArgs.add_cli_args(parser).parse_args()
engine_args = xFuserArgs.from_cli_args(args)
engine_config, input_config = engine_args.create_config()
local_rank = get_world_group().local_rank
assert engine_args.pipefusion_parallel_degree == 1, "This script does not support PipeFusion."
assert engine_args.use_parallel_vae is False, "parallel VAE not implemented for HunyuanVideo"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
subfolder="transformer",
torch_dtype=torch.bfloat16,
revision="refs/pr/18",
)
pipe = HunyuanVideoPipeline.from_pretrained(
pretrained_model_name_or_path=engine_config.model_config.model,
transformer=transformer,
torch_dtype=torch.float16,
revision="refs/pr/18",
)
initialize_runtime_state(pipe, engine_config)
get_runtime_state().set_video_input_parameters(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
batch_size=1,
num_inference_steps=input_config.num_inference_steps,
split_text_embed_in_sp=get_pipeline_parallel_world_size() == 1,
)
parallelize_transformer(pipe)
if args.enable_sequential_cpu_offload:
pipe.enable_sequential_cpu_offload(gpu_id=local_rank)
logging.info(f"rank {local_rank} sequential CPU offload enabled")
elif args.enable_model_cpu_offload:
pipe.enable_model_cpu_offload(gpu_id=local_rank)
logging.info(f"rank {local_rank} model CPU offload enabled")
else:
device = torch.device(f"cuda:{local_rank}")
pipe = pipe.to(device)
if args.enable_tiling:
pipe.vae.enable_tiling(
# Make it runnable on GPUs with 48GB memory
# tile_sample_min_height=128,
# tile_sample_stride_height=96,
# tile_sample_min_width=128,
# tile_sample_stride_width=96,
# tile_sample_min_num_frames=32,
# tile_sample_stride_num_frames=24,
)
if args.enable_slicing:
pipe.vae.enable_slicing()
parameter_peak_memory = torch.cuda.max_memory_allocated(
device=f"cuda:{local_rank}")
if engine_config.runtime_config.use_torch_compile:
torch._inductor.config.reorder_for_compute_comm_overlap = True
pipe.transformer = torch.compile(pipe.transformer,
mode="max-autotune-no-cudagraphs")
# one step to warmup the torch compiler
output = pipe(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
prompt=input_config.prompt,
num_inference_steps=1,
generator=torch.Generator(device="cuda").manual_seed(
input_config.seed),
).frames[0]
torch.cuda.reset_peak_memory_stats()
start_time = time.time()
output = pipe(
height=input_config.height,
width=input_config.width,
num_frames=input_config.num_frames,
prompt=input_config.prompt,
num_inference_steps=input_config.num_inference_steps,
generator=torch.Generator(device="cuda").manual_seed(
input_config.seed),
).frames[0]
end_time = time.time()
elapsed_time = end_time - start_time
peak_memory = torch.cuda.max_memory_allocated(device=f"cuda:{local_rank}")
parallel_info = (
f"dp{engine_args.data_parallel_degree}_cfg{engine_config.parallel_config.cfg_degree}_"
f"ulysses{engine_args.ulysses_degree}_ring{engine_args.ring_degree}_"
f"tp{engine_args.tensor_parallel_degree}_"
f"pp{engine_args.pipefusion_parallel_degree}_patch{engine_args.num_pipeline_patch}"
)
if is_dp_last_group():
resolution = f"{input_config.width}x{input_config.height}"
output_filename = f"results/hunyuan_video_{parallel_info}_{resolution}.mp4"
export_to_video(output, output_filename, fps=15)
print(f"output saved to {output_filename}")
if get_world_group().rank == get_world_group().world_size - 1:
print(
f"epoch time: {elapsed_time:.2f} sec, parameter memory: {parameter_peak_memory/1e9:.2f} GB, memory: {peak_memory/1e9} GB"
)
get_runtime_state().destory_distributed_env()
# mkdir -p results && torchrun --nproc_per_node=2 examples/hunyuan_video_usp_example.py --model tencent/HunyuanVideo --ulysses_degree 2 --num_inference_steps 30 --warmup_steps 0 --prompt "A cat walks on the grass, realistic" --height 320 --width 512 --num_frames 61 --enable_tiling --enable_model_cpu_offload
# mkdir -p results && torchrun --nproc_per_node=2 examples/hunyuan_video_usp_example.py --model tencent/HunyuanVideo --ulysses_degree 2 --num_inference_steps 30 --warmup_steps 0 --prompt "A cat walks on the grass, realistic" --height 544 --width 960 --num_frames 129 --enable_tiling --enable_model_cpu_offload
if __name__ == "__main__":
main()